Высшие жирные кислоты входят в состав чего: 4. 4. Высшие жирные кислоты. – Высшие жирные кислоты: терминология, свойства, применение

Высшие жирные кислоты входят в состав чего: 4. 4. Высшие жирные кислоты. – Высшие жирные кислоты: терминология, свойства, применение

08.10.2020

Содержание

4. 4. Высшие жирные кислоты.

Омыляемые липиды представляют собой сложные эфиры одно- и многоатомных спиртов (глицерина, сфингозина и др.) и высших жирных кислот.

Высшими жирными кислотами ВЖК называются алифатические карбоновые кислоты, которые выделены из липидов. Они содержат от 4 до 24 атомов углерода. Все ВЖК в организме человека содержат четное число атомов углерода, чаще всего 16,18 или 20. В настоящее время из живых организмов выделено свыше 70 таких кислот. По строению неразветвленного углеродного радикала («неполярный хвост») ВЖК делятся на: 1. Насыщенные – не содержат двойных связей. К ним относятся:

  • пальмитиновая С15Н31СООН,

  • стеариновая С18Н35СООН.

Эти кислоты могут синтезироваться в организме.

2. Ненасыщенные– содержат одну или несколько двойных связей. К ним относятся:

  • олеиновая СН3-(СН2)7-СН=СН-(СН2)7-СООН или С17Н33СООН

  • линолевая СН3-(СН2)4-СН=СН-СН2-СН=СН-(СН2)7-СООН или С17Н31СООН

  • линоленовая СН3-СН2-СН=СН-СН2-СН=СН-СН2-СН=СН-(СН2)7-СООН или С17Н29СООН

  • арахидоновая СН3-(СН2)4-СН=СН-СН2-СН=СН-СН2-СН=СН-СН2-СН=СН-(СН2)3-СООН или С19Н31СООН

Все ненасыщенные ВЖК являются незаменимыми, т.к. не синтезируются в организме и должны поступать с пищей, в основном в составе растительных масел.

Все природные ненасыщенные жирные кислоты имеют цис-конформацию. При получении маргарина из растительных масел под воздействием токов высокой частоты может происходить превращение части цис-изомеров в транс-изомеры (ТИЖКи). При попадании в организм ТИЖКи встраиваются в мембраны клеток, изменяют конформацию мембранно-связанных белков-рецепторов для гормонов и конформацию мембранно-связанных ферментов. Такое изменение приводит к нарушению обменных процессов сначала в клетке, а затем во всем организме, что неизменно приводит к развитию патологических процессов.

Н-С-(СН2)7-СН3Н-С-(СН2)7-СН3

Н- С-(СН2)7-СООН НООС-(СН2)7-С-Н

Олеиновая кислота

Цис-форма Транс-форма

(жидкая, темп. плавл. +14) (твердая, темп. плавл. +52)

Свойства ВЖК:

  1. ВЖК малорастворимые или не растворимые в воде, т.к. имеют «неполярный хвост» — радикал и большую массу. Причем, чем больше масса, тем хуже растворимость в воде и лучше растворимость в неполярных растворителях (спирте, бензоле). Чем больше двойных связей в кислоте, тем лучше она растворяется в неполярных растворителях.

  2. С увеличением числа двойных связей снижается температура плавления ВЖК, поэтому все насыщенные ВЖК при комнатной температуре – твердые, а ненасыщенные – жидкие. Животные жиры содержат насыщенные жирные кислоты, поэтому они твердые (исключение – рыбий жир), а растительные масла содержат в основном ненасыщенные ВЖК, поэтому они жидкие (исключение – кокосовое масло).

  3. ВЖК обладают всеми свойствами карбоновых кислот, т.к. содержат в своем составе карбоксильную группу СООН.

Биологическое значение ВЖК:

  1. Входят в состав простых и сложных липидов.

  2. Полиеновые кислоты, и в первую очередь арахидоновая кислота, — исходное вещество для образования гормоноподобных веществ: простогландинов, простациклинов, тромбоксанов, лейкотриенов.

  3. Жирные кислоты являются одним из основных источников энергии в организме, особенно в скелетных мышцах при длительной физической работе, в сердечной мышце. При окислении 1 молекулы пальмитиновой кислоты образуется 130 молекул АТФ. Нервная ткань не использует жирные кислоты как источник энергии.

  4. Эссенциальные жирные кислоты необходимы для нормального роста, развития и функционирования организма, поэтому их объединили в группу витаминов F.

Простагландины.

Простагландины – это производные жирных кислот с 20 углеродными атомами, имеющие в своем составе циклопентановое (пяти-членное) кольцо. По числу двойных связей в боковых цепях, в зависимости от природы и положения их обозначают буквами А, В, С, D. E. F. Среди них преобладают простагландины F, предшественниками которых является арахидоновая кислота. У человека все клетки и ткани, за исключением эритроцитов, синтезируют простагландины.

Простагландины и родственные им простациклины, тромбоксаны, лейкотриены обеспечивают нормальное протекание биохимических и физиологоческих процессов путем участия в обмене веществ. Можно выделить следующие виды биологического действия простагландинов:

  • Влияют на сердечно-сосудистую систему: способствуют расширению сосудов с уменьшением периферического сопротивления, за счет чего увеличивается кровоток, регулируют агрегацию тромбоцитов (группа F – ускоряет, а группа I – ингибирует).

  • Влияют на водно-электролитный обмен: усиливают ионный поток через мембраны эпителиальных клеток, местное образование простагландина F в почках наоборот подавляет выведение иона натрия.

  • Влияют на нервную систему: оказывают седативное и транквилизирующее действие, являются антагонистами противосудорожных препаратов.

  • Влияют на ЖКТ: тормозят секрецию желудка и поджелудочной железы, усиливают моторику кишечника.

  • Влияют на репродуктивную систему: стимулируют активность матки, особенно в период беременности.

Простагландины участвуют в воспалительном процессе, усиливают его в очаге воспаления. Аспирин и другие салицилаты инактивирует фермент, катализирующий превращение арахидоновой кислоты в простагландины. Этим объясняется противовоспалительное действие аспирина.

Высшие жирные кислоты: терминология, свойства, применение



Высшие жирные кислоты (терминология, химические и физические свойства, применение в медицине)

Общая характеристика, терминология

Высшие жирные кислоты — это природные и синтетические одноосновные карбоновые кислоты алифатического ряда, содержащие не менее 6 атомов углерода. Природные Высшие жирные кислоты, в отличие от синтетических, являются структурами нормального строения с четным числом атомов углерода. В зависимости от природы углеводородного радикала различают насыщенные и ненасыщенные жирные кислоты. Известно, что ненасыщенные высшие жирные кислоты, содержащие два и более двойных связей, не могут быть синтезированы в организме и поступают в него только с пищей. Такие кислоты называют незаменимыми или эссенциальными.

Химические и физические свойства

Чаще всего используют тривиальные названия высших жирных кислот. По заместительной номенклатуре IUPAC названия кислот образуют из соответствующих названий углеводородов, добавляя суффикс-ова и слово кислота. В названиях ненасыщенных жирных кислот цифровые локанты указывают на положение кратных связей в углеродном цепи, а префиксы цис, транс — на соответствующую конфигурацию.

Насыщенные кислоты с С6 С9 — маслянистые жидкости с неприятным запахом кислоты с С10 и выше — твердые вещества. Ненасыщенные высшие жирные кислоты при обычных условиях — бесцветные жидкости или кристаллические вещества. Химические свойства жирных кислот обусловлены наличием в их структуре карбоксильной группы и кратных связей. С участием карбоксильной группы жирные кислоты могут образовывать различные функциональные производные (см. Карбоновые кислоты). Высшие жирные кислоты в условиях реакции этерификации реагируют с глицерином и образуют жиры (глицериды).

В состав триглицеридов входят остатки насыщенных и ненасыщенных жирные кислоты нормального строения, преимущественно с четным числом атомов углерода (от С8 до С24). Соли высших жирных кислот называют мылом. Получают их в результате омыления жиров.

Ненасыщенные жирные кислоты с участием двойных кратных связей вступают в реакции электрофильного присоединения (см. олефины). Большое практическое значение имеет гидрогенизация ненасыщенных жирных кислот и жиров.

Гидрогенизации используют в пищевой промышленности для преобразования полиненасыщенных растительных масел в насыщенные твердые жиры. С участием двойной связи олеиновая кислота под действием оксидов азота, серы или УФ-излучения изомеризуется в транс-изомер — элаидиновую кислоту. Природные жиры получают гидролизом триглицеридов жиров и масел, индивидуальные высшие жирные кислоты выделяют из их смеси дробное дистилляцией в вакууме, дробное кристаллизацией, селективными растворителями и хроматографическими методами. Синтетические жирные кислоты получают в результате окисления парафинов и гидрокарбоксилювання олефинов.

Применение в медицине, фармации, ветеринарии, косметологии

Высшие жирные кислоты и их производные широко применяют в медицине, фармации и промышленности. Незаменимые жиры участвуют в синтезе простагландинов, лейкотриенов и тромбоксанов, их остатки входят в состав фосфолипидов. Недостаток незаменимых жиров в организме вызывает дерматит. Потребность человека в высших жирных кислот составляет 2 г / сут. Смесь олеиновой, линолевой, линоленовой и арахидоновой кислот известна под названием «Витамин F». Применяют для профилактики и лечения атеросклероза. Этиловые эфиры жиров льняного масла (олеиновой, линолевой, линоленовой) входят в состав ЛП Линетол, Винизоль, Левовинизоль, Ливиан, Лифузоль, линетоловои мази и др. Используют для профилактики и лечения гипертонии, атеросклероза, при ожогах и лучевой болезни. Продукт омыления растительных масел под действием гидроксида калия — мыло зеленое (Sapo kalinus viridis) — применяют как антисептическое средство для очищения кожи, а также для приготовления мыльного спирта, мыльно-карболового раствора, мази Вилькинсона. Жирные кислоты широко используют для производства мыл, синтетических каучуков, резиновых изделий, при изготовлении синтетических смол, лаков, эмалей, олиф, как сырье для производства высших жирных спиртов, ПАВ, в составе синтетических масел и в других отраслях.

Высшие жирные кислоты С6 С20 — умеренно токсичные вещества, которые оказывают раздражающее действие на неповрежденную кожу и слизистые оболочки. ПДК паров смеси жиров составляет 5 мг / м3 (в пересчете на уксусную кислоту).

Литература

  1. Машковский М.Д. Лекарственные средства. — М., 1996;
  2. Черных В.П., Зименковский Б.С., Гриценко И.С. Органическая химия / Под общ. ред. В.П. Черных. — второй изд. — Х., 2007.
^Наверх

Полезно знать

Жирные кислоты — это… Что такое Жирные кислоты?

Жирные кислоты — алифатические одноосновные карбоновые кислоты с открытой цепью, содержащиеся в этерифицированной форме в жирах, маслах и восках растительного и животного происхождения. Жирные кислоты, как правило, содержат неразветвленную цепь из четного числа атомов углерода (С4-24, включая карбоксильный углерод) и могут быть как насыщенными, так и ненасыщенными[1].

Общие сведения

Жирные кислоты могут быть насыщенными (только с одинарными связями между атомами углерода), мононенасыщенными (с одной двойной связью между атомами углерода) и полиненасыщенными (с двумя и более двойными связями, находящимися, как правило, через CH2-группу). Они различаются по количеству углеродных атомов в цепи, а также, в случае ненасыщенных кислот, по положению, конфигурации (как правило цис-) и количеству двойных связей. Жирные кислоты можно условно поделить на низшие (до семи атомов углерода), средние (восемь — двенадцать атомов углерода) и высшие (более двенадцати атомов углерода). Исходя из исторического названия данные вещества должны быть компонентами жиров. На сегодня это не так; термин «жирные кислоты» подразумевает под собой более широкую группу веществ.

Карбоновые кислоты начиная с масляной кислоты (С4) считаются жирными, в то время как жирные кислоты, полученные непосредственно из животных жиров, имеют в основном восемь и больше атомов углерода (каприловая кислота). Число атомов углерода в натуральных жирных кислотах в основном чётное, что обусловлено их биосинтезом с участием ацетил-кофермента А.

Большая группа жирных кислот (более 400 различных структур, хотя только 10—12 распространены) находятся в растительных маслах семян. Наблюдается высокое процентное содержание редких жирных кислот в семенах определённых семейств растений.

Под незаменимыми понимаются те жирные кислоты, которые не могут быть синтезированы в организме. Для человека незаменимыми являются кислоты, содержащие по крайней мере одну двойную связь на расстоянии более девяти атомов углерода от карбоксильной группы.

Биохимия

Расщепление

Жирные кислоты в виде триглицеридов накапливаются в жировых тканях. При потребности под действием таких веществ как адреналин, норадреналин, глюкагон и адренокортикотропина запускается процесс липолиза. Освобождённые жирные кислоты выделяются в кровоток, по которому попадают к нуждающимся в энергии клеткам, где сперва при участии АТФ происходит связывание (активация) с коферментом А (КоА). При этом АТФ гидролизуется до АМФ с освобождением двух молекул неорганического фосфата (Pi).

R-COOH + КоА-SH + АТФ → R-CO-S-КоА + 2Pi + H+ + АМФ

Синтез

В растительном и животном организме жирные кислоты образуются, как продукты углеводного и жирового обмена. Синтез жирных кислот осуществляется в противоположность расщеплению в цитозоле.

Циркуляция

Пищеварение и всасывание

Коротко- и среднецепочечные жирные кислоты всасываются напрямую в кровь через капилляры кишечного тракта и проходят через воротную вену, как и другие питательные вещества. Более длинноцепочечные слишком велики, чтобы проникнуть напрямую через маленькие капилляры кишечника. Вместо этого они поглощаются жирными стенками ворсинок кишечника и заново синтезируются в триглицериды. Триглицериды покрываются холестерином и белками с образованием хиломикрона. Внутри ворсинки хиломикрон попадает в лимфатические сосуды, так называемый млечный капилляр, где поглощается большими лимфатическими сосудами. Он транспортируется по лимфатической системе вплоть до места, близкого к сердцу, где кровеносные артерии и вены наибольшие. Грудной канал освобождает хиломикрон в кровоток посредством подключичной вены. Таким образом триглицериды транспортируются в места, где в них нуждаются. [2]

Виды существования в организме

Жирные кислоты существуют в различных формах на различных стадиях циркуляции в крови. Они поглощаются в кишечнике, образуя хиломикроны, но в то же время они существуют в виде липопротеинов очень низкой плотности или липопротеинов низкой плотности после превращений в печени. При выделении из адипоцитов жирные кислоты поступают в свободном виде в кровь.

Кислотность

Кислоты с коротким углеводородным хвостом, такие как муравьиная и уксусная кислоты, полностью смешиваются с водой и диссоциируют с образованием достаточно кислых растворов (pKa 3.77 и 4.76, соответственно). Жирные кислоты с более длинным хвостом незначительно отличаются по кислотности. Например, нонановая кислота имеет pKa 4.96. Однако с увеличением длины хвоста растворимость жирных кислот в воде уменьшается очень быстро, в результате чего эти кислоты мало изменяют pH раствора. Значение величин pKa для данных кислот приобретает значение лишь в реакциях, в которые эти кислоты способны вступить. Кислоты, нерастворимые в воде, могут быть растворены в тёплом этаноле, и оттитрованы раствором гидроксида натрия, используя фенолфталеин, в качестве индикатора до бледнорозового цвета. Такой анализ позволяет определить содержание жирных кислот в порции триглицеридов после гидролиза.

Реакции жирных кислот

Жирные кислоты реагируют так же, как и другие карбоновые кислоты, что подразумевает этерификацию и кислотные реакции. Восстановление жирных кислот приводит к жирным спиртам. Ненасыщенные жирные кислоты также могут вступать в реакции присоединения; наиболее характерно гидрирование, которое используется для превращения растительных жиров в маргарин. В результате частичного гидрирования ненасыщенных жирных кислот цис-изомеры, характерные для природных жиров, могут перейти в транс-форму. В реакции Варрентраппа ненасыщенные жиры могут быть расщеплены в расплавленной щёлочи. Эта реакция имеет значение для определения структуры ненасыщенных жирных кислот.

Автоокисление и прогоркание

Жирные кислоты при комнатной температуре подвергаются автоокислению и прогорканию. При этом они разлагаются на углеводороды, кетоны, альдегиды и небольшое количество эпоксидов и спиртов. Тяжёлые металлы, содержащиеся в небольших количествах в жирах и маслах, ускоряют автоокисление. Чтобы избежать этого, жиры и масла часто обрабатываются хелатирующими агентами, такими как лимонная кислота.

Применение

Натриевые и калиевые соли высших жирных кислот являются эффективными ПАВ и используются в качестве мыл. В пищевой промышленности жирные кислоты зарегистрированы в качестве пищевой добавки E570, как стабилизатор пены, глазирователь и пеногаситель. [1]

Разветвлённые жирные кислоты

Разветвлённые карбоновые кислоты липидов обычно не относятся к собственно жирным кислотам, но рассматриваются как их метилированные производные. Метилированные по предпоследнему атому углерода (изо-жирные кислоты) и по третьему от конца цепи (антеизо-жирные кислоты) входят в качестве минорных компонент в состав липидов бактерий и животных.

Разветвленные карбоновые кислоты также входят в состав эфирных масел некоторых растений: так, например, в эфирном масле валерианы содержится изовалериановая кислота:

Основные жирные кислоты

Насыщенные жирные кислоты

Общая формула: CnH2n+1COOH или CH3-(CH2)n-COOH

Тривиальное название Систематическое название (IUPAC) Брутто формула Рациональная полуразвернутая формула Нахождение Т.пл. pKa
Масляная кислота Бутановая кислота C3H7COOH CH3(CH2)2COOH Сливочное масло, древесный уксус −8 °C

4,82

Капроновая кислота Гексановая кислота C5H11COOH CH3(CH2)4COOH Нефть −4 °C 4,85
Каприловая кислота Октановая кислота C7H15COOH CH3(CH2)6COOH 17 °C 4,89
Пеларгоновая кислота Нонановая кислота C8H17COOH CH3(CH2)7COOH 12,5 °C 4.96
Каприновая кислота Декановая кислота C9H19COOH CH3(CH2)8COOH Кокосовое масло 31 °C
Лауриновая кислота Додекановая кислота С11Н23СООН CH3(CH2)10COOH 43,2 °C
Миристиновая кислота Тетрадекановая кислота С13Н27СООН CH3(CH2)12COOH 53,9 °C
Пальмитиновая кислота Гексадекановая кислота С15Н31СООН CH3(CH2)14COOH 62,8 °C
Маргариновая кислота Гептадекановая кислота С16Н33СООН CH3(CH2)15COOH 61,3 °C
Стеариновая кислота Октадекановая кислота С17Н35СООН CH3(CH2)16COOH 69,6 °C
Арахиновая кислота Эйкозановая кислота С19Н39СООН CH3(CH2)18COOH 75,4 °C
Бегеновая кислота Докозановая кислота С21Н43СООН CH3(CH2)20COOH
Лигноцериновая кислота Тетракозановая кислота С23Н47СООН CH3(CH2)22COOH
Церотиновая кислота Гексакозановая кислота С25Н51СООН CH3(CH2)24COOH
Монтановая кислота Октакозановая кислота С27Н55СООН CH3(CH2)26COOH

Мононенасыщенные жирные кислоты

Общая формула: СН3-(СН2)m-CH=CH-(CH2)n-COOH (m=ω-2; n=Δ-2)

Тривиальное название Систематическое название (IUPAC) Брутто формула IUPAC формула (с метил.конца) IUPAC формула (с карб.конца) Рациональная полуразвернутая формула
Акриловая кислота 2-пропеновая кислота С2Н3COOH 3:1ω1 3:1Δ2 СН2=СН-СООН
Метакриловая кислота 2-метил-2-пропеновая кислота С3Н5OOH 4:1ω1 3:1Δ2 СН2=С(СН3)-СООН
Кротоновая кислота 2-бутеновая кислота С3Н5СOOH 4:1ω2 4:1Δ2 СН2-СН=СН-СООН
Винилуксусная кислота 3-бутеновая кислота С3Н6СOOH 4:1ω1 4:1Δ3 СН2=СН-СН2-СООН
Лауроолеиновая кислота цис-9-додеценовая кислота С11Н21СOOH 12:1ω3 12:1Δ9 СН3-СН2-СН=СН-(СН2)7-СООН
Миристоолеиновая кислота цис-9-тетрадеценовая кислота С13Н25СOOH 14:1ω5 14:1Δ9 СН3-(СН2)3-СН=СН-(СН2)7-СООН
Пальмитолеиновая кислота цис-9-гексадеценовая кислота С15Н29СOOH 16:1ω7 16:1Δ9 СН3-(СН2)5-СН=СН-(СН2)7-СООН
Петроселиновая кислота цис-6-октадеценовая кислота С17Н33СOOH 18:1ω12 18:1Δ6 СН3-(СН2)16-СН=СН-(СН2)4-СООН
Олеиновая кислота цис-9-октадеценовая кислота С17Н33СOOH 18:1ω9 18:1Δ9 СН3-(СН2)7-СН=СН-(СН2)7-СООН
Элаидиновая кислота транс-9-октадеценовая кислота С17Н33СOOH 18:1ω9 18:1Δ9 СН3-(СН2)7-СН=СН-(СН2)7-СООН
Цис-вакценовая кислота цис-11-октадеценовая кислота С17Н33СOOH 18:1ω7 18:1Δ11 СН3-(СН2)5-СН=СН-(СН2)9-СООН
Транс-вакценовая кислота транс-11-октадеценовая кислота С17Н33СOOH 18:1ω7 18:1Δ11 СН3-(СН2)5-СН=СН-(СН2)9-СООН
Гадолеиновая кислота цис-9-эйкозеновая кислота С19Н37СOOH 20:1ω11 19:1Δ9 СН3-(СН2)9-СН=СН-(СН2)7-СООН
Гондоиновая кислота цис-11-эйкозеновая кислота С19Н37СOOH 20:1ω9 20:1Δ11 СН3-(СН2)7-СН=СН-(СН2)9-СООН
Эруковая кислота цис-9-доказеновая кислота С21Н41СOOH 22:1ω13 22:1Δ9 СН3-(СН2)11-СН=СН-(СН2)7-СООН
Нервоновая кислота цис-15-тетракозеновая кислота С23Н45СOOH 24:1ω9 23:1Δ15 СН3-(СН2)7-СН=СН-(СН2)13-СООН

Полиненасыщенные жирные кислоты

Общая формула: СН3-(СН2)m-(CH=CH-(CH2)х(СН2)n-COOH

Тривиальное название Систематическое название (IUPAC) Брутто формула IUPAC формула (с метил.конца) IUPAC формула (с карб.конца) Рациональная полуразвернутая формула
Сорбиновая кислота транс,транс-2,4-гексадиеновая кислота С5Н7COOH 6:2ω3 6:2Δ2,4 СН3-СН=СН-СН=СН-СООН
Линолевая кислота цис,цис-9,12-октадекадиеновая кислота С17Н
31
COOH
18:2ω6 18:2Δ9,12 СН3(СН2)3-(СН2-СН=СН)2-(СН2)7-СООН
Линоленовая кислота цис,цис,цис-6,9,12-октадекатриеновая кислота С17Н28COOH 18:3ω6 18:3Δ6,9,12 СН3-(СН2)-(СН2-СН=СН)3-(СН2)6-СООН
Линоленовая кислота цис,цис,цис-9,12,15-октадекатриеновая кислота С17Н29COOH 18:3ω3 18:3Δ9,12,15 СН3-(СН2-СН=СН)3-(СН2)7-СООН
Арахидоновая кислота цис-5,8,11,14-эйкозотетраеновая кислота С19Н31COOH 20:4ω6 20:4Δ5,8,11,14 СН3-(СН2)4-(СН=СН-СН2)4-(СН2)2-СООН
Дигомо-γ-линоленовая кислота 8,11,14-эйкозатриеновая кислота С19Н33COOH 20:3ω6 20:3Δ8,11,14 СН3-(СН2)4-(СН=СН-СН2)3-(СН2)5-СООН
4,7,10,13,16-докозапентаеновая кислота С19Н29COOH 20:5ω4 20:5Δ4,7,10,13,16 СН3-(СН2)2-(СН=СН-СН2)5-(СН2)-СООН
Тимнодоновая кислота 5,8,11,14,17-эйкозапентаеновая кислота С19Н29COOH 20:5ω3 20:5Δ5,8,11,14,17 СН3-(СН2)-(СН=СН-СН2)5-(СН2)2-СООН
Цервоновая кислота 4,7,10,13,16,19-докозагексаеновая кислота С21Н31COOH 22:6ω3 22:3Δ4,7,10,13,16,19 СН3-(СН2)-(СН=СН-СН2)6-(СН2)-СООН
5,8,11-эйкозатриеновая кислота С19Н33COOH 20:3ω9 20:3Δ5,8,11 СН3-(СН2)7-(СН=СН-СН2)3-(СН2)2-СООН

Примечания

См. также

Есть более полная статья
Есть более полная статья

Жиры — Википедия

Шариковая модель триглицерида. Красным цветом выделен кислород, чёрным — углерод, белым — водород

Жиры́, также триглицери́ды, триацилглицериды (сокр. ТАГ) — органические вещества, продукты этерификации карбоновых кислот и трёхатомного спирта глицерина.

В живых организмах выполняют, прежде всего, структурную и энергетическую функции: они являются основным компонентом клеточной мембраны, а в жировых клетках сохраняется энергетический запас организма.

Наряду с углеводами и белками, жиры — один из главных компонентов питания. Жиры растительного происхождения называют маслами (маслами также называют некоторые животные жиры, например, сливочное и топлёное масла). Растительные масла, как правило, имеют жидкую консистенцию при комнатной температуре. Исключение составляют масла тропических растений (пальмовое, кокосовое, какао и т. п.). Жиры животного происхождения, напротив, при комнатной температуре обычно находятся в застывшей фазе. Исключение составляют рыбий жир, говяжий жир с ног (например, при варке холодца) и др.

Состав жиров определили французские ученые М. Шеврель и М. Бертло. В 1811 году М. Шеврель установил, что при нагревании смеси жира с водой в щелочной среде образуются глицерин и карбоновые кислоты (стеариновая и олеиновая). В 1854 году химик М. Бертло осуществил обратную реакцию и впервые синтезировал жир, нагревая смесь глицерина и карбоновых кислот.

Состав жиров отвечает общей формуле

Triglyceride.svg

где R¹, R² и R³ — радикалы (одинаковых или различных) жирных кислот.

Природные жиры содержат в своём составе три кислотных радикала, имеющих неразветвлённую структуру и, как правило, чётное число атомов углерода (содержание «нечётных» кислотных радикалов в жирах обычно менее 0,1 %).

Природные жиры чаще всего содержат следующие жирные кислоты: Насыщенные:
Алкановые кислоты:

Ненасыщенные:
Алкеновые кислоты:

Алкадиеновые кислоты:

Алкатриеновые кислоты:

В состав некоторых природных жиров входят остатки и насыщенных, и ненасыщенных карбоновых кислот.

Животные жиры[править | править код]

Чаще всего в животных жирах встречаются стеариновая и пальмитиновая кислоты, ненасыщенные жирные кислоты представлены в основном олеиновой, линолевой и линоленовой кислотами. Физико-химические и химические свойства жиров в значительной мере определяются соотношением входящих в их состав насыщенных и ненасыщенных жирных кислот.

В растениях жиры содержатся в сравнительно небольших количествах, за исключением семян масличных растений, в которых содержание жиров может быть более 50 %.

Энергетическая ценность жира примерно равна 9,3 ккал на грамм, что соответствует 39 кДж/г. Таким образом, энергия, выделяемая при расходовании 1 грамма жира, приблизительно соответствует, с учетом ускорения свободного падения, поднятию груза весом 39000 Н (массой ≈ 4000 кг) на высоту 1 метр.

При сильном взбалтывании с водой жидкие (или расплавленные) жиры образуют более или менее устойчивые эмульсии (см. гомогенизация). Природной эмульсией жира в воде является молоко.

Жиры — вязкие жидкости или твёрдые вещества, легче воды. Их плотность колеблется в пределах 0,9—0,95 г/см³. Жиры гидрофобны, практически нерастворимы в воде, хорошо растворимы в органических растворителях (бензол, дихлорэтан, эфир и др.) и частично растворимы в этаноле (5—10 %).

Классификация[править | править код]

Чем больше в жирах содержание ненасыщенных кислот, тем ниже температура плавления жиров.[2]

Агрегатное состояние жиров Различия в химическом строении Происхождение жиров Исключения
Твёрдые жиры Содержат остатки насыщенных ВКК Животные жиры Рыбий жир(жидк. при н/у)
Смешанные жиры Содержат остатки насыщенных и ненасыщенных ВКК
Жидкие жиры(масла) Содержат остатки ненасыщенных ВКК Растительные жиры Кокосовое масло, какао масло(твёрд. при н/у)

Номенклатура[править | править код]

По тривиальной номенклатуре глицериды называют, добавляя окончание -ид к сокращенному названию кислоты и приставку, показывающую, сколько гидроксильных групп в молекуле глицерина проэтерифицировано.

Гидролиз жиров[править | править код]

Гидролиз для жиров характерен, так как они являются сложными эфирами. Он осуществляется под действием минеральных кислот и щелочей при нагревании. Гидролиз жиров в живых организмах происходит под влиянием ферментов. Результат гидролиза — образование глицерина и соответствующих карбоновых кислот: С3H5(COO)3-R + 3H2O ↔ C3H5(OH)3 + 3RCOOH

Расщепление жиров на глицерин и соли высших карбоновых кислот проводится обработкой их щёлочью — (едким натром), перегретым паром, иногда — минеральными кислотами. Этот процесс называется омыление жиров (см. Мыло).
С3H5(COO)3-(C17H35)3 + 3NaOH → C3H5(OH)3 + 3C17H35COONa
тристеарин (жир) + едкий натр → глицерин + стеарат натрия (мыло)

Гидрирование (гидрогенизация) жиров[править | править код]

В составе растительных масел содержатся остатки ненасыщенных карбоновых кислот, поэтому они могут подвергаться гидрированию. Через нагретую смесь масла с тонко измельченным никелевым катализатором пропускают водород, который присоединяется по месту двойных связей ненасыщенных углеводородных радикалов. В результате реакции жидкое масло превращается в твёрдый жир. Этот жир называется саломасом, или комбинированным жиром. При гидрировании, как побочный эффект, происходит изомеризация некоторых из оставшихся двойных связей, тем самым некоторые молекулы жира превращаются в трансжиры, доля трансижиров в масле увеличивается.

Жиры являются одним из основных источников энергии для млекопитающих. Эмульгирование жиров в кишечнике (необходимое условие их всасывания) осуществляется при участии солей жёлчных кислот. Энергетическая ценность жиров примерно в 2 раза выше, чем углеводов, при условии их биологической доступности и здорового усвоения организмом.

Насыщенные жиры расщепляются в организме на 25—30 %, а ненасыщенные жиры расщепляются полностью.

Благодаря крайне низкой теплопроводности, жир, откладываемый в подкожной жировой клетчатке, служит теплоизолятором, предохраняющим организм от потери тепла (у китов, тюленей и др.).

  • Пищевая промышленность (в частности, кондитерская)
  • Фармация
  • Производство мыла и косметических изделий
  • Производство смазочных материалов
  1. ↑ Темирбулатова А. Е. — Учебник по химии для 11х классов естественно-математического направления, 2011 — С.218
  2. ↑ под ред. А. С. Егорова — Репетитор по химии, 2009. — С.642
  • Триглицериды // Большая российская энциклопедия. Том 32. — М., 2016. — С. 389.
  • Жиры // Большая российская энциклопедия. Том 10. — М., 2008. — С. 98—99.
  • Тютюнников, Б. Н. Химия жиров / Б. Н. Тютюнников, З. И. Бухштаб, Ф. Ф. Гладкий и др. — 3-е изд., перераб. и доп. — М.: Колос, 1992. — 448 с.
  • Беззубов, Л. П. Химия жиров / Л. П. Беззубов. — 3-е изд. — М.: Пищевая промышленность, 1975. — 280 с.
  • Щербаков, В. Г. Химия и биохимия переработки масличных семян / В. Г. Щербаков. — М.: Пищевая промышленность, 1977. — 180 с.
  • Евстигнеева Р. П. Химия липидов / Р. П. Евстигнеева, Е. Н. Звонкова, Г. А. Серебренникова, В. И. Швец. — М.: Химия, 1983. — 296 с., ил.

Насыщенные и ненасыщенные жирные кислоты, жироподобные вещества и их роль в нормальном функционировании человеческого организма. Нормы потребления этих веществ.

  1. Насыщенные и ненасыщенные жирные кислоты, жироподобные вещества и их роль в нормальном функционировании человеческого организма. Нормы потребления этих веществ.

  2. Теория адекватного питания как научная основа для рационального питания.

  3. Витамины: авитаминоз и гиповитаминоз. Классификационные признаки витаминов.

Жиры — органические соединения, входящие в состав животных и растительных тканей и состоящие в основном из триглицеридов (сложных эфиров глицерина и различных жирных кислот). Кроме того, в состав жиров входят вещества, обладающие высокой биологической активностью: фосфатиды, стерины, некоторые витамины. Смесь различных триглицеридов составляет так называемый нейтральный жир. Жир и жироподобные вещества объединяют обычно под названием липиды.

У человека и животных наибольшее количество жиров находится в подкожной жировой клетчатке и жировой ткани, располагающейся в сальнике, брыжейке, забрюшинном пространстве и т. д. Жиры содержатся также в мышечной ткани, костном мозге, печени и других органах. В растениях жиры накапливаются в основном в плодовых телах и семенах. Особенно высокое содержание жиров свойственно так называемым масличным культурам. Например, в семенах подсолнечника жиры составляют до 50% и более (в пересчете на сухое вещество).

Биологическая роль жиров заключается прежде всего в том, что они входят в состав клеточных структур всех видов тканей и органов и необходимы для построения новых структур (так наз. пластическая функция). Важнейшее значение имеют жиры для процессов жизнедеятельности, т. к. вместе с углеводами они участвуют в энергообеспечении всех жизненных функций организма. Кроме того, жиры, накапливаясь в жировой ткани, окружающей внутренние органы, и в подкожной жировой клетчатке, обеспечивают механическую защиту и теплоизоляцию организма. Наконец, жиры, входящие в состав жировой ткани, служат резервуаром питательных веществ и принимают участие в процессах обмена веществ и энергии.

Природные жиры содержат более 60 видов различных жирных кислот, обладающих различными химическими и физическими свойствами и определяющих тем самым различия в свойствах самих жиров. Молекулы жирных кислот представляют собой «цепочки» из атомов углерода, связанных между собой и окруженных атомами водорода. Длина цепи определяет многие свойства, как самих жирных кислот, так и жиров, образуемых этими кислотами. Длинноцепочечные жирные кислоты имеют твердую консистенцию, короткоцепочечные являются жидкими веществами. Чем выше молекулярный вес жирных кислот, тем выше температура их плавления, а соответственно и температура плавления жиров, в состав которых входят эти кислоты. Вместе с тем, чем выше температура плавления жиров, тем они хуже усваиваются. Все легкоплавкие жиры усваиваются одинаково хорошо. По усвояемости жиры можно разделить на три группы:

  1. жир с температурой плавления ниже температуры тела человека, усвояемость 97-98% ;

  2. жир с температурой плавления выше 37°, усвояемость около 90%;

  3. жир с температурой плавления 50-60°, усвояемость около 70- 80%.

По химическим свойствам жирные кислоты делятся на насыщенные (все связи между углеродными атомами, образующими «остов» молекулы, насыщены, или заполнены, атомами водорода) и ненасыщенные (не все связи между атомами углерода заполнены атомами водорода). Насыщенные и ненасыщенные жирные кислоты отличаются не только по своим химическим и физическим свойствам, по и по биологической активности и «ценности» для организма.

Насыщенные жирные кислоты содержатся в жирах животного происхождения. Они обладают невысокой биологи­ческой активностью и могут оказывать отрицательное дей­ствие на жировой и холестериновый обмены.

Ненасыщенные жирные кислоты широко представлены во всех пищевых жирах, но больше всего их находится в расти­тельных маслах. Они содержат двойные ненасыщенные связи, что обусловливает их значительную биологическую актив­ность и способность к окислению. Самыми распространенными являются олеиновая, линолевая, линоленовая и арахидоновая жирные кислоты, среди которых наибольшей активностью об­ладает арахидоновая кислота.

Ненасыщенные жирные кислоты в организме не образуются и должны ежедневно вводиться с пищей в количестве 8— 10 г. Источниками олеиновой, линолевой и линоленовой жир­ных кислот являются растительные масла. Арахидоновая жир­ная кислота почти не содержится ни в одном продукте и может синтезироваться в организме из линолевой кислоты в присутствии витамина В6 (пиридоксина).

Недостаток ненасыщенных жирных кислот приводит к за­держке роста, возникновению сухости и воспалению кожных покровов.

Ненасыщенные жирные кислоты входят в состав мембранной системы клеток, миелиновых оболочек и соедини­тельной ткани. Эти кислоты отличаются от истинных витаминов тем, что не обладают способностью усиливать обменные процессы, однако потребность организма в них значительно выше, чем в истинных витаминах.

Для обеспечения физиологической потребности организма в ненасыщенных жирных кислотах необходимо ежедневно в пи­щевой рацион вводить 15—20 г растительного масла.

Высокой биологической активностью жирных кислот обла­дают подсолнечное, соевое, кукурузное, льняное и хлопковое масла, в которых содержание ненасыщенных жирных кислот составляет 50—80 %.

Само распределение полиненасыщенных жирных кислот в организме свидетельствует об их важной роли в его жизнедеятельности: больше всего их содержится в печени, мозге, сердце, половых железах. При недостаточном поступлении с пищей содержание их уменьшается прежде всего в этих органах. Важная биологическая роль этих кислот подтверждается их высоким содержанием в эмбрионе человека и в организме новорожденных, а также в грудном молоке.

В тканях имеется значительный запас полиненасыщенных жирных кислот, позволяющий довольно долго осуществлять нормальные превращения в условиях недостаточного поступления жира с пищей.

Рыбий жир отличается самым высоким содержанием наиболее активной из полиненасыщенных жирных кислот — арахидоновой; не исключено, что эффективность рыбьего жира объясняется не только имеющимися в нем витаминами А и D, но и высоким содержанием этой столь необходимой организму, особенно в детском возрасте, кислоты.

Важнейшим биологическим свойством полиненасыщенных жирных к т является их участие в качестве обязательного компонента в образовании структурных элементов (клеточных мембран, миелиновой оболочки нервного волокна, соединительной ткани), а также в таких высокоактивных в биологическом отношении комплексах, как фосфатиды, липопротеиды (белково-липидные комплексы) и др.

Полиненасыщенные жирные кислоты обладают способностью повышать выведение холестерина из организма, переводя его в легкорастворимые соединения. Это свойство имеет большое значение в профилактике атеросклероза. Кроме того, полиненасыщенные жирные кислоты оказывают нормализующее действие на стенки кровеносных сосудов, повышая их эластичность и снижая проницаемость. Имеются данные, что недостаток этих кислот ведет к тромбозу коронарных сосудов, т. к. жиры, богатые насыщенными жирными кислотами, повышают свертываемость крови. Поэтому полиненасыщенные жирные кислоты могут рассматриваться как средства предупреждения ишемической болезни сердца.

По биологической ценности и содержанию полиненасыщенных жирных кислот жиры можно разделить на три группы.

К первой относят жиры, обладающие высокой биологической активностью, в которых содержание полиненасыщенных жирных кислот составляет 50-80%; 15- 20 г в сутки этих жиров могут удовлетворить потребность организма в таких кислотах. К этой группе принадлежат растительные масла (подсолнечное, соевое, кукурузное, конопляное, льняное, хлопковое).

Во вторую группу входят жиры средней биологической активности, которые содержат менее 50% полиненасыщенных жирных кислот. Для удовлетворения потребности организма в этих кислотах требуется уже 50-60 г таких жиров в сутки. К ним относятся свиное сало, гусиный и куриный жир.

Третью группу составляют жиры, содержащие минимальное количество полиненасыщенных жирных кислот, которое практически не в состоянии удовлетворить потребность организма в них. Это бараний и говяжий жир, сливочное масло и другие виды молочного жира.

Биологическую ценность жиров, кроме различных жирных кислот, определяют и входящие в их состав жироподобные вещества — фосфатиды, стерины, витамины и др.

Фосфатиды по своей структуре весьма близки к нейтральным жирам: чаще в пищевых продуктах содержится фосфатид лецитин, несколько реже — кефалин. Фосфатиды являются необходимой составной частью клеток и тканей, активно участвуя в их обмене, особенно в процессах, связанных с проницаемостью клеточных мембран. Особенно много фосфатидов в костном жире. Эти соединения, принимая участие в жировом обмене, влияют на интенсивность всасывания жира в кишечнике и использование их в тканях (липотропное действие фосфатидов). Фосфатиды синтезируются в организме, но непременным условием их образования являются полноценное питание и достаточное поступление белка с пищей. Источниками фосфатидов в питании человека являются многие продукты, особенно желток куриного яйца, печень, мозги, а также пищевые жиры, особенно нерафинированные растительные масла.

Стерины также обладают высокой биологической активностью и участвуют в нормализации жирового и холестеринового обмена. Фитостерины (растительные стерины) образуют с холестерином нерастворимые комплексы, которые не всасываются; тем самым предотвращается повышение содержания холестерина в крови. Особенно эффективны в этом отношении эргостерин, который под действием ультрафиолетовых лучей превращается в организме в витамин D, и стеостерин, способствующий нормализации содержания холестерина в крови. Источники стеринов — различные продукты животного происхождения (свиная и говяжья печень, яйца и т. д.). Растительные масла теряют большую часть стеринов при рафинировании.

Жиры относятся к основным пищевым веществам, поставляющим энергию для обеспечения процессов жизнедеятельности организма и «строительный материал» для построения тканевых структур.

Жиры обладают высокой калорийностью, она превосходит теплотворную способность белков и углеводов более чем в 2 раза. Потребность в жирах определяется возрастом человека, его конституцией, характером трудовой деятельности, состоянием здоровья, климатическими условиями и т. д. Физиологическая норма потребления жиров с пищей для людей среднего возраста составляет 100 г в сутки и зависит от интенсивности физической нагрузки. С возрастом рекомендуется сокращать количество жира, поступающего с пищей. Потребность в жирах может быть удовлетворена при употреблении различных жировых продуктов.

Оптимальным следует считать соотношение, когда животные жиры составляют 70% суточного потребления жиров, а растительные — 30% .

Среди жиров животного происхождения высокими пищевыми качествами и биологическими свойствами выделяется молочный жир, используемый преимущественно в виде сливочного масла. Этот вид жира содержит большое количество витаминов (A, D2, E) и фосфатидов. Высокая усвояемость (до 95%) и хорошие вкусовые качества делают сливочное масло продуктом, широко употребляемым людьми всех возрастов. К животным жирам относятся также свиное сало, говяжий, бараний, гусиный жир и др. Они содержат относительно немного холестерина, достаточное количество фосфатидов. Вместе с тем их усвояемость различна и зависит от температуры плавления. Тугоплавкие жиры с температурой плавления выше 37° (свиное сало, говяжий и бараний жир) усваиваются хуже, чем сливочное масло, гусиный и утиный жир, а также растительные масла (температура плавления ниже 37°). Жиры растительного происхождения богаты незаменимыми жирными кислотами, витамином Е, фосфатидами. Они легко усваиваются.

Биологическую ценность растительных жиров во многом определяют характер и степень их очистки (рафинации), которую проводят для удаления вредных примесей. В процессе очистки теряются стерины, фосфатиды в другие биологически активные вещества. К комбинированным (растительным и животным) жирам относятся различные виды маргаринов, кулинарные и др. Из комбинированных жиров наиболее распространены маргарины. Их усвояемость близка к усвояемости сливочного масла. Они содержат много витаминов A, D, фосфатидов и других биологически активных соединений, необходимых для нормальной жизнедеятельности.

Возникающие при хранении пищевых жиров изменения приводят к снижению их пищевой и вкусовой ценности. Поэтому при длительном хранении жиров их следует оберегать от действия света, кислорода воздуха, тепла и других факторов.

 Таким образом, жиры в организме человека играют как важную энергетическую и пластическую роль. Кроме того, они являются хороши­ми растворителями ряда витаминов и источниками биологически активных веществ. Жир повышает вкусовые качества пищи и вызывает чувство длительного насыщения.

ВЫСШИЕ ЖИРНЫЕ КИСЛОТЫ • Большая российская энциклопедия

  • рубрика
  • родственные статьи
  • image description

    В книжной версии

    Том 6. Москва, 2006, стр. 151

  • image description

    Скопировать библиографическую ссылку:


Авторы: Ю. Н. Огибин

ВЫ́СШИЕ ЖИ́РНЫЕ КИСЛО́ТЫ (ВЖК), при­род­ные и син­те­ти­че­ские али­фа­тич. кар­бо­но­вые ки­сло­ты, со­дер­жа­щие не ме­нее 6 ато­мов уг­ле­ро­да в мо­ле­ку­ле. Су­ще­ст­ву­ют на­сы­щен­ные, не­на­сы­щен­ные В. ж. к., нор­маль­но­го и раз­ветв­лён­но­го строе­ния, од­но- или мно­го­ос­нов­ные; кро­ме кар­бок­силь­ной груп­пы мо­гут со­дер­жать др. функ­цио­наль­ные груп­пы.

На­сы­щен­ные ВЖК нор­маль­но­го стро­ения со­ста­ва C6–C9 – жид­ко­сти с рез­ким за­па­хом, со­ста­ва С10 и вы­ше – твёр­дые ве­ще­ст­ва. Боль­шин­ст­во раз­ветв­лён­ных и не­на­сы­щен­ных ВЖК – вяз­кие жид­ко­сти, хо­ро­шо рас­тво­ри­мы в ор­га­нич. рас­тво­ри­те­лях, не­рас­тво­ри­мы в во­де. ВЖК об­ла­да­ют хи­мич. свой­ст­ва­ми кар­бо­но­вых ки­слот. В при­ро­де встре­ча­ют­ся, как пра­ви­ло, ли­ней­ные на­сы­щен­ные и не­насы­щен­ные ки­сло­ты с чёт­ным чис­лом ато­мов уг­ле­ро­да со­ста­ва C10–C22; в ви­де гли­це­ри­дов они со­дер­жат­ся в жи­вотных жи­рах и рас­тит. мас­лах, в ви­де эфи­ров выс­ших жир­ных спир­тов – в при­род­ных вос­ках. К важ­ней­шим при­род­ным ВЖК от­но­сят­ся стеа­ри­но­вая С17Н35СООН, олеи­но­вая С17Н33СООН, ри­ци­но­ле­вая С17Н32(ОН)СООН, а так­же уча­ст­вую­щие в био­син­те­зе про­стаг­лан­ди­нов – ли­но­ле­вая С17Н29СООН, ли­но­ле­но­вая С17Н27СООН и ара­хи­до­но­вая С19Н31СООН ки­сло­ты (см. Не­за­ме­ни­мые жир­ные ки­сло­ты).

При­род­ные ВЖК по­лу­ча­ют гид­ро­ли­зом жи­ров и рас­тит. ма­сел; син­те­тич. ВЖК – окис­ле­ни­ем аль­де­ги­дов и ал­ка­нов, гид­ро­кар­бок­си­ли­ро­ва­ни­ем ал­ке­нов. При­ме­ня­ют ВЖК в про­из-ве мою­щих средств, све­чей, сма­зоч­ных, ла­ко­кра­соч­ных, тек­стиль­но-вспо­мо­гат. ма­те­риа­лов, ин­гре­ди­ен­тов для ре­зи­но­тех­нич. из­де­лий, ис­кусств. ко­жи, эмуль­га­то­ров ла­тек­сов и кау­чу­ков, при­са­док к ра­кет­но­му и ди­зель­но­му то­п­ли­вам, для син­те­за али­фа­тич. ами­нов и ами­дов и др.

Жиры, подготовка к ЕГЭ по химии

Жиры — органические соединения, по строению являющиеся сложными эфирами трехатомного спирта глицерина и высших карбоновых (жирных) кислот.

К жирным кислотам (их формулы лучше выучить 😉 относятся:

  • Пальмитиновая — C15H31COOH (предельная)
  • Стеариновая — C17H35COOH (предельная)
  • Олеиновая — C17H33COOH (непредельная, 1 двойная связь в радикале)
  • Линолевая — C17H31COOH (непредельная, 2 двойные связи в радикале)
  • Линоленовая — C17H29COOH (непредельная, 3 двойные связи в радикале)
Растительные и животные жиры

Жиры образуются в организме растений и животных, служат запасным питательным веществом. В строении растительных и животных жиров есть некоторые важные отличия.

Заметьте, что растительные жиры чаще жидкие и в них входят преимущественно остатки непредельных жирных кислот, а животные жиры — твердые и содержат остатки предельных жирных кислот.

Растительные и животные жиры
Номенклатура жиров

По систематической номенклатуре жиры принято называть триацилглицеринами. Названия жирам дают в зависимости от ацилов — остатков жирных кислот, входящих в их состав. Для формирования единого названия к остаткам кислот добавляют суффикс «оил».

В соответствии с тривиальной номенклатурой, жиры называют, добавляя окончание «ин» к названию кислоты и приставку, указывая, сколько гидроксогрупп в молекуле глицерина подверглось этерификации. В общем лучше 1 раз увидеть, чем 100 раз услышать ;)

Номенклатура жиров
Получение жиров

Жиры (по строению сложные эфиры) получаются в реакции этерификации, протекающей между трехатомным спиртом глицерином и высшими карбоновыми (жирными) кислотами.

В зависимости от того, какие именно кислоты участвуют в реакции, образуются различные жиры.

Получение жиров
Химические свойства жиров
  • Гидрирование растительных жиров
  • В состав растительных жиров входят непредельные кислоты, которые поддаются гидрированию и превращаются в предельные. Таким путем в пищевой промышленности получают маргарин.

    Гидрирование жиров
  • Гидролиз
  • Как сложные эфиры, жиры способны вступать в реакцию гидролиза, который может быть кислотным и щелочным. В результате кислотного гидролиза образуется глицерин и исходные жирные кислоты, в результате щелочного гидролиза — глицерин и соли жирных кислот.

    Реакция щелочного гидролиза жиров называется реакцией омыления, в результате получаются соли жирных кислот — мыла. Кислотный гидролиз протекает обратимо, щелочной — необратимо.

    Гидролиз жиров

    В состав твердого мыла входят соли Na, в состав жидкого — K.

    Сила карбоновых кислот

©Беллевич Юрий Сергеевич

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Posted in Разное

Отправить ответ

avatar
  Подписаться  
Уведомление о