Глаз свет – ЦВЕТ ГЛАЗ ЧЕЛОВЕКА: значение и изменение цвета глаз, глаза разных цветов

Глаз свет – ЦВЕТ ГЛАЗ ЧЕЛОВЕКА: значение и изменение цвета глаз, глаза разных цветов

11.01.2019

Содержание

Определяем цветотип: Цвет глаз и рисунок радужки

Оригинал http://halibi.livejournal.com/278728.html#cutid1 немного доработан

Наша внешность «раскрашена» в одной гармоничной палитре, так что подробный анализ нюансов внешности нам поможет в поиске собственных цветов.

Итак, сегодня о вете глаз

Как вы помните, у цвета есть 6 характеристик – темный-светлый, яркий – смягченный, теплый-холодный. 

Сначала разберемся с первыми 4 характеристиками.
Следующие 2 картинки нам помогут. Смотрим на них и определяем свой цвет глаз.
Картинки первоначально с сайта Ирене Райтер (Irenee Riter).http://www.thescienceofpersonaldress.com/
 У нее очень много наработок по цветотипам и типам фигуры, она занимается этим с конца 80х годов. К сожалению, пока она убрала большую часть информации, так как у нее выходит интернет-книга. Однако что-то чудом у меня осталось, так как я сохранила кое-что на компьютер, что обычно не делаю. Мы к ее наработкам тоже будем изредка обращаться.

Перевод терминов для тех, кто не знаком с английским: 
1. Яркие (bright )
2. Смешанные «разбавленные» (muted)
3. Светлые (light)
4. Темные (dark/deep)

5. Мягкие (soft)
6. Чистые (не смешанные) (clear)

На первой картинке примерный вид глаз, на второй уже конкретные цвета.
NB: C темным и светлым, я думаю, разобраться не трудно. Что касается ярких и мягких цветов – то в ярких нет примеси серого цвета, а в мягких есть . Например, если голубые глаза яркие – то они льдисто-голубые, а если мягкие – то серо-голубые


Покажу на своем примере опять: мой цвет глаз попадает в раздел 5 – мягкие цвета – серо-зеленый, второй от разделительной черты.

Итак если Ваш цвет глаз попадает в 6 и 1 секто – вы попадаете в характеристик «яркость» можете быть яркой весной или яркой зимой
Если ваши глаза попадают в 2 и 5 сектор ndash; вы попадаете в характеристик «мягкость» и можете быть мягким летом или осенью
Если ваши глаз светлые, (3 сектор) то вы, возможно, светлое лето или весна

Если ваши глаз темные, (4 сектор) то вы, вероятно темная осень или зима

Теперь о характеристика теплый – холодный

Теоретически, голубые и черные глаза считаются холодными, зеленые и серые — нейтральными, карие и ореховые — теплыми. Но это не всегда так. Бывают более теплые и более холодные оттенки

Вот примерная  эскизная таблица Слева — холодные, справа — теплые цвета:


  Напомню, что холодные цвета характерны для зимы и лета, теплые цвета — для осени и весны. Для людей , чья характеристика soft характерны смешанные цвета — серый, зеленый и ореховый.

Однако, цвет глаз не всегда такой уж безупречный показатель. Во- первых, могут быть отклонения в цветотипе у конкретного человека, а во-вторых, некоторые оттенки едва различимы и сложно сказать,» холодные» глаза или «теплые». Я советую просто посчитать их нейтральными, чтобы это вас не сбивало. Когда вы найдете свой типаж, вы увидите подтверждение в своих глазах и там уж определитесь — теплые они или холодные. В третьих, глаза часто бывают многоцветные. Не всегда можно определить, какой цвет доминирующий. 

Поэтому есть еще одна теория. Ее автор — одна из создателей  «сезонной теории» Bernice Kentner. Здесь можно почитать отрывок из ее книги olor me a season colorconnection.yuku.com/topic/1128/Color-Me-A-Season-CMAS nbsp;
 Меня же пока интересует, что она пишет о глазах в книг A rainbow in your eyes вкратце). Эта теория определения типажа по глазам  учитывает цвет кожи, цвет глаз и рисунок радужки, поэтому она более точная. Хотя цвет волос, несомненно, тоже очень важный показатель..
 Бернис утверждает. что определенному типу внешности (сезону) характерны особые орнаменты рисунков радужки (eye patterns)

Картинки с сайт http://expressingyourtruth.blogspot.com/2011/11/eyes-sanguine-air-sanguine-iris-type-is.html
дл весн это желтое кольцо на сером фоне, звезда

дл лета nbsp;- разбитое стекло

осень «солнце» вокруг зрачка,пятна по радужке

зима «оси колеса», идущие от зрачка, а еще возможен рисунок, напоминающий лепестки

Кроме этого, автор обращает внимание на оттенок кожи век (особенно показательна внутренняя нижняя часть, которая не загорает)  — зим кожа имеет холодны светло-розовый л сероватый ттенок, у есны  желтый, золотистый, лет розовый, осени

  рыжий, персиковый.

Напоминаю, что тон и цвет кожи — разные вещи. например, люди ,имеющие розовый оттенок кожи, могут быть светлыми (светло-розовая кожа), средними (розово-бежевая), темными (розово-коричневая). Для рыжего оттенка светлый — светло-персиковый, средний — персиковый, темный — бронзовый, для желтого оттенка светлый — слоновая кость, средний — золотисто-бежевый, темный — оливковый, для серого цвета  светлый — серовато — белый, средний — серовато — бежевый и серо-коричневый, темный  — синевато коричневый)

Для наглядности автор приводит примеры различных типов радужки. Их 4 — один «чистый» вид и три смешанных.Начнем Лета.

На первой картинке «Абсолютное Лето» — мягкий серо-голубой цвет глаз, присутствует много белого цвета. кожа век — розовая
На второй и третьей картинке «лето + осень» — коричневый цвет — влияние «осени», однако сезон «лето » признан доминирующим из-за розового цвета век

на четвертой картинке «лето+зима» — влияние зимы — в рисунке «лепестки». Кожа розовая тоже.

ТеперьОсень, ее сложновато отличить от лета при голубых или зеленых глазах, в основном, показателем считается цвет кожи век, а что касается рисунка — то «солнце» вокруг зрачка менее круглое, и  иногда имеет длинные несимметричные лучи.

На первой картинке «Осень+зима». Кожа век персиковая, от зимы — рисунок, напоминающий колесо
на второй картинке «Осень+ весна», светло-персиковая кожа, краски осени , «рисунок» весны
На третьей картинке «Абсолютная осень» — рисунок — «солнце», персиковая кожа.
На четвертой картинке — Осень+лето. Похоже на третью картинку с предыдущей фотографии, но кожа персиковая, а не розовая, поэтому «осень — доминирующий сезон»

Зима

На первой картинке автору видится «Зима + лето». что тут летнего, я толком объяснить не могу — я этого не вижу, а она не объясняет=) — возможно рисунок напоминает разбитое стекло. От зимы же — «лепестковый рисунок»
На второй картинке — глаз самой Бернис — она яркая зима (зима+весна) : от зимы — рисунок и светло-голубой цвет с большим количеством белого, от весны — рисунок вокруг зрачка. Кожа светло-серовато-розовая.
На третьей картинке — Абсолютная Зима. Рисунок и цвет радужки — «зимний», кожа век — сероватая.
На четвертой картинке «Зима+ осень»- почти абсолютная зима, с малой примесью осеннего цвета

Весна
На первой картинке — «Весна+ осень». От весны — чистый голубой цвет, от осени, рисунок «солнце»вокруг зрачка
На второй картинке «Весна+ осень+лето». От весны — цвет кожи и контрастность, от осени — рисунок, от лета — цвет радужки

На третьей картинке «Весна+ зима». Тон кожи — желтоватый, рисунок радужки -» зимнее «колесо»»
На четвертой картинке «Абсолютная Весна» — по ней можно как раз проследить, какой рисунок вокруг зрачка  должен быть у весны.

Теперь попробую определить , что говорит о моем цветотипе мой глаз.
1. Рисунок — ореховое или оливковое солнце вокруг зрачка, основа сине-зеленая или серо-зеленая, зеленые точки в глазу. 
 2. кожа век внутри — персиковая 

Соответственно, я осень. Прибавив к этому предыдущие результаты с двух первых картинок (мягкие, нейтральные краски), у меня большая вероятность попасть в «Мягкую осень» («осень+лето»).

Однако помните, что цвет глаз может лишь дать вам нужное направление — например, что вы лето+осень или весна+зима, а чтобы определить доминирующий сезон, нужно соотнести все остальные характеристики — кожу, волосы, полутона итд.

Интересно:
Даже при очень темном цвете глаз можно заметить несколько цветов в глазу. Часто у нейтральных или холодных сезонов даже при теплом насыщенном цвете глаз бывает синее кольцо вокруг радужки — показатель того, что типаж не чисто теплый.

Глаз — Википедия

Глаз (лат. oculus) — сенсорный орган (орган зрительной системы) животных, обладающий способностью воспринимать электромагнитное излучение в световом диапазоне длин волн и обеспечивающий функцию зрения. У человека через глаз поступает около 90 % информации из окружающего мира[1].

Глаз позвоночных животных представляет собой периферическую часть зрительного анализатора, в котором фоторецепторную функцию выполняют нейросенсорные (фоторецепторные) клетки сетчатки[2].

Эволюция глаза: глазное пятно — глазная ямка — глазной бокал — глазной пузырь — глазное яблоко.

У беспозвоночных животных встречаются очень разнообразные по типу строения и зрительным возможностям глаза и глазки — одноклеточные и многоклеточные, прямые и обращённые (инвертированные), паренхимные и эпителиальные, простые и сложные.

У членистоногих часто присутствует несколько простых глаз (иногда непарный простой глазок как, например, науплиальный глаз ракообразных) или пара сложных фасеточных глаз. Среди членистоногих некоторые виды одновременно имеют и простые, и сложные глаза. Например, у ос два сложных глаза и три простых глаза (глазка). У скорпионов 3—6 пар глаз (1 пара — главные, или медиальные, остальные — боковые). У щитня — 3. В эволюции фасеточные глаза произошли путём слияния простых глазков. Близкие по строению к простому глазу глаза мечехвостов и скорпионов, видимо, возникли из сложных глаз трилобитообразных предков путём слияния их элементов.

Глаз человека состоит из глазного яблока и зрительного нерва с его оболочками. У человека и др. позвоночных имеется по два глаза, расположенных в глазницах черепа.

Этот орган возник один раз и, несмотря на различное строение у животных разных типов, имеет очень похожий генетический код управления развитием глаза. В 1994 году швейцарский профессор Вальтер Геринг (нем. Walter Gehring) открыл ген Pax6 (этот ген относится к классу мастер-генов, то есть таких, которые управляют активностью и работой других генов). Этот ген присутствует как у Homo Sapiens, так и у многих других видов, в частности у насекомых, но у медуз этот ген отсутствует. В 2010 году группа швейцарских учёных во главе с В. Герингом, обнаружила у медуз вида Cladonema radiatum ген Pax-A. Пересадив данный ген от медузы к мухе дрозофиле, и управляя его деятельностью, удалось вырастить нормальные глаза мух в нескольких нетипичных местах

[3].

Как установлено с помощью методов генетической трансформации, гены eyeless дрозофилы и small eye мыши, имеющие высокую гомологичность, контролируют развитие глаза: при создании генноинженерной конструкции, с помощью которой вызывалась экспрессия гена мыши в различных имагинальных дисках мухи, у мухи появлялись эктопические фасеточные глаза на ногах, крыльях и других частях тела[4][5]. В целом в развитие глаза вовлечено несколько тысяч генов, однако один-единственный «пусковой ген» (мастер-ген) осуществляет запуск всей этой генной программы. То, что этот ген сохранил свою функцию у столь далёких групп, как насекомые и позвоночные, может свидетельствовать об общем происхождении глаз всех двустороннесимметричных животных.

Глаз гигантского кальмара

Самые большие глаза среди всех ныне существующих животных имеют гигантские глубоководные кальмары Architeuthis dux и Mesonychoteuthis hamiltoni, достигающие длины 10—16,8 м. Диаметр глаз этих головоногих моллюсков достигает по крайней мере 27 см, а по некоторым данным до 40 см[6] и даже до 50 см[7]. Глаза этих кальмаров минимум в 2,5 раза, а то и больше, превосходят по размерам самые большие глаза у других животных[6]. Такие огромные глаза помогают им в тёмных океанских глубинах находить добычу[8] и вовремя замечать кашалотов, их главных врагов[6].

Среди позвоночных животных самые большие глаза имеют киты и крупные рыбы. Диаметр глаза у синего кита, горбача и кашалота достигает 10,9 см, 6,1 см и 5,5 см соответственно. Самые большие глаза среди рыб имеет рыба-меч, их диаметр составляет 9 см[6]. Однако самые большие глаза среди всех известных позвоночных имели обитавшие в мезозойских морях рептилии ихтиозавры. Глаза представителей рода Temnodontosaurus достигали 25 см в диаметре и, как предполагается, позволяли этим животным видеть на глубинах до 1600 м[9][10].

В то же время многочисленные мелкие виды животных имеют глаза диаметром менее 1 мм[6].

У взрослого человека глаз имеет диаметр примерно 24 мм, его размер у всех людей практически одинаков и отличается лишь на доли миллиметра. Объём глаза у человека в среднем равен 7,448 см³, масса составляет 7—8 г.

В пропорциональном отношении самые крупные глаза по отношению к размерам тела среди всех млекопитающих имеет филиппинский долгопят.

Eye-diagram.svg

Глазное яблоко состоит из оболочек, которые окружают внутреннее ядро глаза, представляющее его прозрачное содержимое — стекловидное тело, хрусталик, водянистая влага в передней и задней камерах.

Ядро глазного яблока окружают три оболочки: наружная, средняя и внутренняя.

  1. Наружная — очень плотная фиброзная оболочка глазного яблока (tunica fibrosa bulbi), к которой прикрепляются наружные мышцы глазного яблока, выполняет защитную функцию и благодаря тургору обусловливает форму глаза. Она состоит из передней прозрачной части — роговицы, и задней непрозрачной части белесоватого цвета — склеры.
  2. Средняя, или сосудистая, оболочка глазного яблока, играет важную роль в обменных процессах, обеспечивая питание глаза и выведение продуктов обмена. Она богата кровеносными сосудами и пигментом (богатые пигментом клетки хориоидеи препятствуют проникновению света через склеру, устраняя светорассеяние). Она образована радужкой, ресничным телом и собственно сосудистой оболочкой. В центре радужки имеется круглое отверстие — зрачок, через которое лучи света проникают внутрь глазного яблока и достигают сетчатки (величина зрачка изменяется в результате взаимодействия гладких мышечных волокон — сфинктера и дилататора, заключённых в радужке и иннервируемых парасимпатическим и симпатическим нервами). Радужка содержит различное количество пигмента, от которого зависит её окраска — «цвет глаз».
  3. Внутренняя, или сетчатая, оболочка глазного яблока, — сетчатка — рецепторная часть зрительного анализатора, здесь происходит непосредственное восприятие света, биохимические превращения зрительных пигментов, изменение электрических свойств нейронов и передача информации в центральную нервную систему.

С функциональной точки зрения, оболочки глаза и её производные подразделяют на три аппарата: рефракционный (светопреломляющий) и аккомодационный (приспособительный), формирующие оптическую систему глаза, и сенсорный (рецепторный) аппарат.

Светопреломляющий аппарат[править | править код]

Светопреломляющий аппарат глаза представляет собой сложную систему линз, формирующую на сетчатке уменьшенное и перевёрнутое изображение внешнего мира, включает в себя роговицу, камерную влагу — жидкости передней и задней камер глаза, хрусталик, а также стекловидное тело, позади которого лежит сетчатка, воспринимающая свет.

Аккомодационный аппарат[править | править код]

Аккомодационный аппарат глаза обеспечивает фокусировку изображения на сетчатке, а также приспособление глаза к интенсивности освещения. Он включает в себя радужку с отверстием в центре — зрачком — и ресничное тело с ресничным пояском хрусталика.

Фокусировка изображения обеспечивается за счёт изменения кривизны хрусталика, которая регулируется цилиарной мышцей. При увеличении кривизны хрусталик становится более выпуклым и сильнее преломляет свет, настраиваясь на видение близко расположенных объектов. При расслаблении мышцы хрусталик становится более плоским, и глаз приспосабливается для видения удалённых предметов. У других животных, в частности, головоногих, при аккомодации превалирует как раз изменение расстояния между хрусталиком и сетчаткой.

Зрачок представляет собой отверстие переменного размера в радужной оболочке. Он выполняет роль диафрагмы глаза, регулируя количество света, падающего на сетчатку. При ярком свете кольцевые мышцы радужки сокращаются, а радиальные расслабляются, при этом зрачок сужается, и количество света, попадающего на сетчатку, уменьшается, это предохраняет её от повреждения. При слабом свете наоборот, сокращаются радиальные мышцы и зрачок расширяется, пропуская в глаз больше света.

Рецепторный аппарат[править | править код]

Рецепторный аппарат глаза представлен зрительной частью сетчатки, содержащей фоторецепторные клетки (высокодифференцированные нервные элементы), а также тела и аксоны нейронов (проводящие нервное раздражение клетки и нервные волокна), расположенных поверх сетчатки и соединяющиеся в слепом пятне в зрительный нерв.

Сетчатка также имеет слоистое строение. Устройство сетчатой оболочки чрезвычайно сложное. Микроскопически в ней выделяют 10 слоёв. Самый наружный слой является свето-цветовоспринимающим, он обращён к сосудистой оболочке (внутрь) и состоит из нейроэпителиальных клеток — палочек и колбочек, воспринимающих свет и цвета, следующие слои образованы проводящими нервное раздражение клетками и нервными волокнами. У человека толщина сетчатки очень мала, на разных участках она составляет от 0,05 до 0,5 мм.

Свет входит в глаз через роговицу, проходит последовательно сквозь жидкость передней (и задней) камеры, хрусталик и стекловидное тело, пройдя через всю толщу сетчатки, попадает на отростки светочувствительных клеток — палочек и колбочек. В них протекают фотохимические процессы, обеспечивающие цветовое зрение.

Областью наиболее высокого (чувствительного) зрения, центрального, в сетчатке является так называемое жёлтое пятно с центральной ямкой, содержащей только колбочки (здесь толщина сетчатки до 0,08—0,05 мм) — ответственных за цветовое зрение (цветоощущение). То есть вся световая информация, которая попадает на жёлтое пятно, передаётся в мозг наиболее полно. Место на сетчатке, где нет ни палочек, ни колбочек, называется слепым пятном, — оттуда зрительный нерв выходит на другую сторону сетчатки и далее в мозг.

У многих позвоночных позади сетчатки расположен тапетум — особый слой сосудистой оболочки глаза, выполняющий функцию зеркальца. Он отражает прошедший сквозь сетчатку свет обратно на неё, таким образом повышая световую чувствительность глаз. Покрывает всё глазное дно или его часть, визуально напоминает перламутр.

Структура коннекто́ма сетчатки глаза человека картируется в рамках проекта EyeWire.

Чёткое изображение предметов на сетчатке обеспечиваются сложной уникальной оптической системой глаза, состоящей из роговицы, жидкостей передней и задней камер, хрусталика и стекловидного тела. Световые лучи проходят сквозь перечисленные среды оптической системы глаза и преломляются в них согласно законам оптики. Основное значение для преломления света в глазу имеет хрусталик.

Для чёткого восприятия предметов необходимо, чтобы их изображение всегда фокусировалось в центре сетчатки. Функционально глаз приспособлен для рассмотрения удалённых предметов. Однако люди могут чётко различать предметы, расположенные на разном расстоянии от глаза, благодаря способности хрусталика изменять свою кривизну, а соответственно и преломляющую силу глаза. Способность глаза приспосабливаться к ясному видению предметов, расположенных на разном расстоянии, называют аккомодацией. Нарушение аккомодационной способности хрусталика приводит к нарушению остроты зрения и возникновения близорукости или дальнозоркости.

Одной из причин развития близорукости является перенапряжение ресничных мышц хрусталика при работе с очень мелкими предметами, длительного чтения при плохом освещении, чтение в транспорте. Во время чтения, письма или иной работы предмет следует располагать на расстоянии 30—35 см от глаза. Слишком яркое освещение очень раздражает фоторецепторы сетчатки глаза. Это также вредит зрению. Свет должен быть мягким, не слепить глаза.

При письме, рисовании, черчении правой рукой источник света располагают слева, чтобы тень от руки не затемняла рабочую область. Важно, чтобы было верхнее освещение. При длительном зрительном напряжении через каждый час необходимо делать 10-минутные перерывы. Следует беречь глаза от травм, пыли, инфекции.

Нарушение зрения, связанное с неравномерным преломлением света роговицей или хрусталиком, называют астигматизмом. При астигматизме обычно снижается острота зрения, изображение становится нечётким и искажённым. Астигматизм устраняется при помощи очков с особыми (цилиндрическими) стёклами.

Близорукость — отклонение от нормальной способности оптической системы глаза преломлять лучи, которое заключается в том, что изображение предметов, расположенных далеко от глаз, возникают перед сетчаткой. Близорукость бывает врождённой и приобретённой. При естественной близорукости глазное яблоко имеет удлинённую форму, поэтому лучи от предметов фокусируются перед сетчаткой. Чётко видны предметы, расположенные на близком расстоянии, а изображение удалённых предметов нечёткое, расплывчатое. Приобретённая близорукость развивается при увеличении кривизны хрусталика вследствие нарушения обмена веществ или несоблюдения правил гигиены зрения. Существует наследственная предрасположенность к развитию близорукости. Основными причинами приобретённой близорукости являются повышенная зрительная нагрузка, плохое освещение, недостаток витаминов в пище, гиподинамия. Для исправления близорукости носят очки с двояковогнутыми линзами.

Дальнозоркость — отклонение от нормальной способности оптической системы глаза преломлять световые лучи. При врождённой дальнозоркости глазное яблоко укороченное. Поэтому изображения предметов, расположенных близко к глазам, возникают позади сетчатки. В основном дальнозоркость возникает с возрастом (приобретённая дальнозоркость) вследствие уменьшения эластичности хрусталика. При дальнозоркости нужны очки с двояковыпуклыми линзами.

Мы воспринимаем свет благодаря тому, что его лучи проходят через оптическую систему глаза. Там возбуждение обрабатывается и передаётся в центральные отделы зрительной системы. Сетчатка — это сложная оболочка глаза, содержащая несколько слоёв клеток, различных по форме и функциям.

Первый (внешний) слой — пигментный, состоит из плотно расположенных эпителиальных клеток, содержащих чёрный пигмент фусцин. Он поглощает световые лучи, способствуя более четкому изображению предметов. Второй слой — рецепторный, образован светочувствительными клетками — зрительными рецепторами — фоторецепторами: колбочками и палочками. Они воспринимают свет и превращают его энергию в нервные импульсы.

В сетчатке человека насчитывают около 130 млн палочек и 7 млн колбочек. Расположены они неравномерно: в центре сетчатки находятся преимущественно колбочки, дальше от центра — колбочки и палочки, а на периферии преобладают палочки.

Колбочки обеспечивают восприятие формы и цвета предмета. Они малочувствительны к свету, возбуждаются только при ярком освещении. Больше колбочек вокруг центральной ямки. Это место скопления колбочек называют жёлтым пятном. Жёлтое пятно, особенно его центральную ямку, считают местом наилучшего видения. В норме изображение всегда фокусируется оптической системой глаза на жёлтом пятне. При этом предметы, которые воспринимаются периферическим зрением, различаются хуже.

Палочки имеют удлинённую форму, цвет не различают, но очень чувствительны к свету и поэтому возбуждаются даже при малом, так называемом сумеречном, освещении. Поэтому мы можем видеть даже в плохо освещённой комнате или в сумерках, когда очертания предметов едва отличаются. Благодаря тому, что палочки преобладают на периферии сетчатки, мы способны видеть «уголком глаза», что происходит вокруг нас.

Итак, фоторецепторы воспринимают свет и превращают его в энергию нервного импульса, который продолжает свой путь в сетчатке и проходит через третий слой клеток, образованный соединением фоторецепторов с нервными клетками, имеющими по два отростка (их называют биполярными). Далее информация по зрительным нервам через средний и промежуточный мозг передаётся в зрительные зоны коры головного мозга. На нижней поверхности мозга зрительные нервы частично пересекаются, поэтому часть информации от правого глаза поступает в левое полушарие и наоборот.

Место, где зрительный нерв выходит из сетчатки, называется слепым пятном. Оно лишено фоторецепторов. Предметы, изображение которых попадает на этот участок, не видны. Площадь слепого пятна сетчатки глаза человека (в норме) составляет от 2,5 до 6 мм².

Многоцветность воспринимается благодаря тому, что колбочки реагируют на определённый спектр света изолированно. Существует три типа колбочек. Колбочки первого типа реагируют преимущественно на красный цвет, второго — на зелёный и третьего — на синий. Эти цвета называют основными. Под действием волн различной длины колбочки каждого типа возбуждаются неодинаково. Вследствие этого каждая длина волны воспринимается как особый цвет. Например, когда мы смотрим на радугу, то самыми заметными для нас кажутся основные цвета (красный, зелёный, синий).

Оптическим смешением основных цветов можно получить остальные цвета и оттенки. Если все три типа колбочек возбуждаются одновременно и одинаково, возникает ощущение белого цвета.

Некоторые люди, так называемые тетрахроматы, способны видеть излучения, выходящие за пределы видимого глазом обычного человека спектра и различают цвета, которые для обычного человека воспринимаются как идентичные.

Часть людей (примерно 8 % мужчин[11] и 0,4 % женщин[источник не указан 1294 дня]) имеют особенность цветового восприятия, называемую дальтонизмом. Дальтоники по-своему воспринимают цвет, путая некоторые контрастные для большинства оттенки и различая свои, кажущиеся одинаковыми для остального большинства людей цвета[источник не указан 1294 дня]. Считается, что неправильное различение цветов связано с недостаточным количеством одного или нескольких видов колбочек в сетчатке глаза[11]. Существует также приобретенный дальтонизм вследствие заболеваний или возрастных изменений. Дальтоники могут не ощущать своей особенности зрения до момента, пока они не столкнутся с необходимостью выбора между двумя похожими для них оттенками, воспринимаемыми как разные цвета человеком с нормальным зрением. Из-за возможности ошибки цветового восприятия часть профессий предусматривают ограничение на допуск дальтоников к работе. Интересно, что обратная сторона дальтонизма — повышенная чувствительность к некоторым, не доступным для остальных, оттенкам ещё мало изучена и редко используется в хозяйстве[источник не указан 1294 дня].

Восприятие расположения предметов в пространстве[править | править код]

Правильная оценка расположения предметов в пространстве и расстояния до них достигается глазомером. Его можно улучшить, как и любое свойство. Глазомер особенно важен для пилотов, водителей. Улучшения восприятия предметов достигается благодаря таким характеристикам, как поле зрения, угловая скорость, бинокулярное зрение и конвергенция.

Поле зрения — это пространство, которое можно охватить глазом при фиксированном состоянии глазного яблока. Полем зрения можно охватить значительное количество предметов, их расположение на определённом расстоянии. Однако изображение предметов, находящихся в поле зрения, но расположенных ближе, частично накладывается на изображения тех, что за ними. С удалением предметов от глаза уменьшаются их размеры, рельефность их формы, разница теней на поверхности, насыщенность цветов и т. п., пока предмет не исчезает из поля зрения.

В пространстве много предметов движется, и мы можем воспринимать не только их движение, но и скорость движения. Скорость движения предметов определяют на основании скорости перемещения их по сетчатке, так называемой угловой скорости. Угловая скорость близко расположенных предметов выше, к примеру, вагоны движущегося поезда проносятся мимо наблюдателя с большой скоростью, а самолёт в небе исчезает из поля зрения медленно, хотя скорость его гораздо больше скорости поезда. Это потому, что поезд находится относительно наблюдателя намного ближе, чем самолёт. Таким образом, близко расположенные предметы исчезают из поля зрения раньше, чем отдалённые, поскольку их угловая скорость больше. Однако движение предметов, которые перемещаются чрезвычайно быстро или слишком медленно, глаз не воспринимает.

Точной оценке пространственного расположения предметов, их движения способствует также бинокулярное зрение. Это позволяет не только воспринимать объёмное изображение предмета, поскольку одновременно охватывается и левая, и правая части объекта, но и определить местоположение в пространстве, расстояние до него. Это можно объяснить тем, что когда в коре большого головного мозга объединяются ощущения от изображений предметов в левом и правом глазу, в ней происходит оценка последовательности расположения предметов, их формы.

Если преломление в левом и правом глазу неодинаковое, это приводит к нарушению бинокулярного зрения (видение двумя глазами) — косоглазия. Тогда на сетчатке возникает резкое изображение от одного глаза и расплывчатое от другого. Вызывается косоглазие нарушением иннервации мышц глаза, прирождённо или приобретённым снижением остроты зрения на один глаз и тому подобное.

Ещё одним из механизмов пространственного восприятия является восхождение глаз (конвергенция). Оси правого и левого глаза с помощью глазодвигательной мышцы сходятся на предмете, который рассматривается. Чем ближе расположен предмет, тем сильнее сокращены прямые внутренние и растянуты прямые внешние мышцы глаза. Это позволяет определить удалённость предметов.

Eye-diagram.svg

Фоторецепторная способность найдена у некоторых простейших существ. Беспозвоночные, многие черви, а также двустворчатые моллюски имеют глаза простейшей структуры — без хрусталика. Среди моллюсков только головоногие имеют сложные глаза, похожие на глаза позвоночных.

Глаз насекомого составной — состоит из множества отдельных фасеток, каждая из которых собирает свет и направляет его к рецептору, чтобы создать зрительный образ. Существует десять различных типов структурной организации светоприёмных органов. При этом все схемы захвата оптического изображения, которые используются человеком, — за исключением трансфокатора (вариообъектива) и линзы Френеля — можно найти в природе. Схемы строения глаза можно категоризировать следующим образом: «простой глаз» — с одной вогнутой светоприёмной поверхностью и «сложный глаз» — состоящий из нескольких отдельных линз, расположенных на общей выпуклой поверхности[12].Стоит заметить, что слово «простой» не относится к меньшему уровню сложности или остроты восприятия. На самом деле, оба типа строения глаза могут быть адаптированы к почти любой среде или типу поведения. Единственное ограничение, присущее для данной схемы строения глаза, это разрешение. Структурная организация сложных глаз не позволяет им достичь разрешения лучше, чем 1°. Также суперпозиционные глаза могут достигать более высокой чувствительности, чем аппозиционные глаза. Именно поэтому суперпозиционные глаза больше подходят жителям сред с низким уровнем освещённости (океаническое дно) или почти полным отсутствием света (подземные водоёмы, пещеры)[12]. Глаза также естественно разделяются на две группы на основе строения клеток фоторецепторов: фоторецепторы могут быть цилиарными (как у позвоночных) или рабдомерными. Эти две группы не являются монофилийными. Так, например, книдариям также присущи цилиарные клетки в качестве «глаз»[13], а у некоторых аннелид имеются оба типа фоторецепторных клеток[14].

  1. Волкова И. П. Роль зрения в жизнедеятельности человека и последствия его нарушения в психическом и личностном развитии (неопр.) (недоступная ссылка). koleso.mostinfo.ru (20 мая 2008). Дата обращения 3 апреля 2013. Архивировано 18 февраля 2013 года.
  2. ↑ Быков, 2001, с. 220—221.
  3. ↑ статья «Медузы и мухи заверили общность происхождения глаз» на сайті membrana.ru (неопр.) (30 июля 2010). Дата обращения 7 августа 2010.
  4. ↑ Жимулев И. Ф.// Общая и молекулярная генетика (курс лекций для студентов 3-го курса) — сетевая публикация. Гл.14.1 «Генетика развития», с.14/17 (неопр.) (недоступная ссылка). Дата обращения 22 августа 2009. Архивировано 19 апреля 2009 года.
  5. Gehring WJ. The genetic control of eye development and its implications for the evolution of the various eye-types (англ.) // Int J Dev Biol.. — 2002. — No. 46(1). — P. 65—73. — PMID 11902689. Архивировано 3 апреля 2013 года.
  6. 1 2 3 4 5 Nilsson D.-E., Warrant E. J., Johnsen S., Hanlon R., Shashar N. A Unique Advantage for Giant Eyes in Giant Squid (англ.) // Current Biology. — 2012. — Vol. 22, iss. 8. — P. 683—688. — DOI:10.1016/j.cub.2012.02.031.
  7. Carwardine M. Animal Records. — London: Natural History Museum, 2008. — P. 246. — 256 p. — ISBN 1-4027-5623-2.
  8. Dr. Clyde Roper. Giant Squid Architeuthis dux (неопр.). Smithsonian Ocean. Smithsonian Institution (2018). Дата обращения 3 сентября 2019.
  9. Motani R., Rothschild B. M., Wahl W. What to do with a 10-inch eyeball? – Evolution of vision in ichthyosaurs (англ.) // Journal of Vertebrate Paleontology. — 1999. — Vol. 19. — P. 65. — DOI:10.1080/02724634.1999.10011202.
  10. Motani R. Evolution of fish-shaped reptiles (Reptilia: Ichthyopterygia) in their physical environments and constraints (англ.) // Annual Review of Earth and Planetary Sciences. — 2005. — Vol. 33. — P. 395—420. — DOI:10.1146/annurev.earth.33.092203.122707.
  11. 1 2 Д. Хьюбел. Глаз, мозг, зрение / под ред. А. Л. Бызова. — М.: Мир, 1990. — 172 с.
  12. 1 2 Land, M. F.; Fernald, R. D. The evolution of eyes (неопр.) // Annual Reviews (publisher). — 1992. — Т. 15. — С. 1—29. — DOI:10.1146/annurev.ne.15.030192.000245. — PMID 1575438.
  13. Kozmik, Zbynek; Ruzickova, Jana; Jonasova, Kristyna; Matsumoto, Yoshifumi; Vopalensky, Pavel; Kozmikova, Iryna; Strnad, Hynek; Kawamura, Shoji; Piatigorsky, Joram. Assembly of the cnidarian camera-type eye from vertebrate-like components (англ.) // Proceedings of the National Academy of Sciences of the United States of America : journal. — 2008. — Vol. 105, no. 26. — P. 8989—8993. — DOI:10.1073/pnas.. — Bibcode: 2008PNAS..105.8989K. — PMID 18577593. (недоступная ссылка)
  14. Fernald, Russell D. Casting a Genetic Light on the Evolution of Eyes (англ.) // Science. — 2006. — September (vol. 313, no. 5795). — P. 1914—1918. — DOI:10.1126/science.1127889. — Bibcode: 2006Sci…313.1914F. — PMID 17008522.

Мы угадаем цвет ваших глаз :: Инфониак

Развлекательный тест: Мы угадаем цвет ваших глазТесты

Говорят что глаза — это зеркало души, а какого цвета ваши глаза?

Спорим, что мы угадаем цвет ваших глаз по тому, как вы выбираете оттенки.

Итак: зеленый, карий или голубой?

Читайте также: Раскройте тайны своей ДУШИ по цвету глаз

Ответьте на несколько вопросов и сможете узнать, оказались ли мы правы.


Значение цвета глаз

Ученые доказали, что цвет глаз определяется областью в передней доли головного мозга, который также отвечает за некоторые черты нашего характера. Вот, что означает цвет ваших глаз.

Черные глаза

glaz-9.jpg

Люди с очень темной радужной оболочкой становятся феноменальными лидерами и очень уверенны в себе. Другие считают вас надежным, ответственным и решительным человеком. 

В любви вы осторожны, но когда решаетесь на серьезные отношения, вы очень верны.

Люди с черными глазами обладают врожденными интуитивными способностями. Вас читают настоящим авторитетом. Вы можете яростно отстаивать свои принципы, но остаетесь критичны к себе. В работе вы берете на себя ведущую роль и предпочитаете работать в одиночестве.

Карие глаза

glaz-10.jpg

Люди с карими глазами дружелюбные и любящие. Они приятные в общении, приземленные, но могут быть напористыми и прямолинейными, когда нужно. 

Другие люди считают вас преданными, нежными и заслуживающими доверия. Люди с карими глазами любят заводить новых друзей, они практичны и невозмутимы. 

Вы способны полностью посвятить себя работе или отношениям. На вас можно положиться в трудную минуту, и вы можете позаботиться о близких людях. Кареглазые люди бескорыстны и щедры.

Голубые глаза

glaz-11.jpg

Голубоглазые люди спокойные, умные, любящие и добрые. 

Их часто воспринимают, как застенчивых и осторожных, но если они на что-то решились, поберегитесь. Они очень проницательны и легко видят суть людей.

Они предпочитают длительные отношения. Исследования показали, что они переносят боль лучше других людей.

Люди с голубыми глазами нежные и духовные.

Серые глаза

glaz-15.jpg

Если у вас серые глаза, другие воспринимают вас, как человека трудолюбивого и с богатым воображением. Сероглазые люди могут быть хамелеонами, и другим бывает сложно узнать их истинное «Я». 

Они легко приспосабливаются и серьезно относятся к романтическим отношениям и работе, но не любят сплетни и драму.

Многие люди с серыми глазами меняют цвет глаз в зависимости от настроения. Так некоторые утверждают, что их глаза темнеют, когда они злятся или грустят или становятся светло-голубыми, когда они испытывают счастье. В глубине души такие люди очень вдумчивые, умные и любящие.

Светло-карие глаза

glaz-14.jpg

Люди со светло-карими или ореховыми глазами являются независимыми и авантюрными по натуре. Они любят пробовать все новое, довольно отважны и сильны.

Они отличаются страстным темпераментом и чувственны, задорны и любят развлекаться.

Ваш цвет глаз может меняться с коричневого до зеленого в зависимости от настроения. Вас можно назвать веселым, немного бесшабашным, но точно не скучным человеком.

Зеленые глаза

glaz-13.jpg

Обладатели этого редкого цвета глаз считаются привлекательными, сексуальными и загадочными. Это творческие люди и оригинальные мыслители. Зеленоглазые люди умеют работать в стрессовой ситуации. 

Они активны и отличаются большим жизнелюбием. Они очень трудолюбивы, но в любви могут быть ревнивы, и им быстро все наскучивает.

У них есть потребность в самовыражении, а творчество и физическая активность поможет им избавиться от стресса.

Глаза и свет: Как устроено наше зрение

Мы живём в мире буквально пронизанном электромагнитными волнами. Они повсюду. Любимая музыка в приёмнике доходит до нас через радиоволны, для разогрева еды мы используем микроволны, и наконец — благодаря инфракрасному излучению мы ощущаем тепло солнечных лучей. Всё это примеры электромагнитных волн. Что же это такое? Строгое научное определение, это распространяющееся в пространстве изменение состояния электромагнитного поля. Электромагнитное излучение способно распространяться практически во всех средах, а в вакууме (в пространстве свободном от материи) это излучение достигает абсолютной максимальной скорости — 299,792,458 метров в секунду! Как и у любой волны, у электромагнитной волны тоже есть параметры: длина волны (расстояние между гребнями волны) и частота (количество колебаний за единицу времени). Причем эти параметры обратно пропорциональны:

Где λ – длина волны, v — фазовая скорость, для электромагнитной волны в вакууме это v=299,792,458 м/с, а f — частота колебания.

Электромагнитные волны распространяются со скоростью света (который, как мы знаем, тоже подвид этих волн). Как же различать волны? По двум характеристикам мы можем точно определить, с какой волной имеем дело: длина волны и частота колебания.

Длина волны — это расстояние между двумя гребнями волны. Причём это расстояние у электромагнитных волн бывает самым разным: от нанометров до километров. Частота — это количество повторений за единицу времени, в случае с волнами это частота колебаний.

Ближайшая к нам звезда Солнце — мощнейший источник электромагнитных волн для Земли. Солнце одновременно излучает весь возможный спектр волн: радиоволны, микроволны, инфракрасные и ультрафиолетовые волны, рентгеновские и гамма-волны. Благодаря инфракрасным, например, Солнце греет Землю и всех живых существ. Без этих лучей температура на Земле установилась бы на отметке — 270 градусов.

Удивительно то, что глаз человека умеет различать длину волны. Но только человек воспринимает излучение волны как цвет. Например, излучение волны длиной 400 нм мы воспринимаем как фиолетовый цвет, а 600 нм уже как зелёный. Цвета переходят от одного к другому до тех пор пока длина волны не достигнет 780 нм, это предел восприимчивости глаза и красный цвет.

Какие лампы лучше для глаз (светодиодные и другие)

Ученые доказали фактически, что длительное влияние плохого освещения сказывается на здоровье и настроении человека.

Используемые в жилых помещениях осветительные приборы различно влияют на глаза. Эта статья подробно расскажет о том, какие лампы лучше для глаз и какой вид освещения наиболее опасен для зрения. 

Освещение для глаз

Как освещение влияет на здоровье глаз

Один из основных спектров излучения естественных и искусственных видов освещения – это ультрафиолет. Его влияние на организм человека имеет как положительный, так и отрицательный характер.

Ультрафиолетовое излучение от солнца обеспечивает кожу загаром, насыщает ее солнечной энергией. Вдобавок солнечный свет укрепляет иммунно – защитные силы организма, содействует улучшению настроения, подавляет аллергенность.

Вреден ультрафиолет тем, что при его длительном влиянии, ускоряется процесс старения тканей, развиваются кожные, офтальмологические заболевания. Следовательно, продолжительное влияние ультрафиолета, повышает риск возникновения патологий, зрительного аппарата включая:

  1. глаукому;
  2. катаракту:
  3. онкологические заболевания глаз.

Помимо солнечного света, ультрафиолетовое излучение источают искусственные источники. Менее всего УФ лучи образуют обычные лампочки, устанавливаемые в жилых и офисных помещениях. Энергосберегающие приборы повышают нагрузку на глаза и быстрее их утомляют.

Наносит вред глазам освещение с бликами. Такие элементы светотени нарушают концентрацию зрения и сильно напрягают зрительные органы. В результате происходит расфокусировка, проявляется астенопия.

Воздействие на зрение теплого и холодного освещения

Искусственные источники освещения излучают свет двух видов: теплый и холодный. Зрительное восприятие каждого типа света зависит от уровня цветовой температуры, измеряемой в Кельвинах. Таким образом, чем выше показатели Ц. Т., тем холоднее освещение.

Влияние теплого света действует на человека расслабляюще, а холодного наоборот активизирует нервные центры, повышая тонус. Длительное влияние холодного освещения утомляет глаза, вызывает ощущение дискомфорта. Более безопасно воздействует на зрение теплое желтоватое или белое нейтральное свечение.

Влияние на глаза тусклого и яркого света

Слишком яркий свет негативно воздействует на глаза. Его резкое холодное свечение раздражает сетчатку, и вызывают болевые ощущения. Сильно темное освещение также вредит зрению, поскольку от него сильно устают органы зрения.

Чрезмерно тусклый или яркий свет не являются основной причиной развития глазных заболеваний. Впрочем, неблагоприятное воздействие света входит в ряд факторов нарушающих остроту зрения. Вдобавок световая интенсивность влияет на психоэмоциональный фон. Под воздействием слишком яркого или тусклого освещения возникает чувство психологического дискомфорта.

Виды ламп и их влияние на зрение

Влияние искусственных источников света на органы зрения человека исследуется давно. Исследования ученых определили: чем ярче свет, тем сильнее он воздействует на глаза. Вдобавок негативное влияние на зрение оказывает мерцающее освещение, вызывающее глазную боль, головокружение, снижение концентрации.

Существует 4 вида ламп наиболее часто используемых для освещения жилых помещений:

  • обычные и галогенные лампы накаливания;
  • энергосберегающие;
  • светодиодные.

Каждый из упомянутых приборов освещения обладает достоинствами и недостатками. Все разновидности лампочек, по разному влияют на глаза и самочувствие человека.

Лампочки накаливания

Эксплуатируются человечеством на протяжении 100 лет. Надежность этих ламп проверена временем. Они практически не влияют на зрение, стоят дешево.

Недостатком этих лампочек является высокий уровень нагрева, обуславливающий короткий срок пригодности и высокое потребление электроэнергии. Вдобавок они недостаточно излучают красные и фиолетовые тона, содействуя искажению восприятия.

Для освещения жилья предпочтительнее использовать зеркальные и цветные лампы. Первые самый приемлемый вариант, поскольку они дают наиболее яркое и равномерное освещение с теплым и рассеянным светом.

Галогенные лампы

Какое освещение не вредит зрениюГалогенная лампа представляет собой лампу накаливания, оснащенную специальным баллоном в котором находится буферный газ из галогеновых химических элементов (брома или йода).

В обычных лампочках накаливания при сильном нагреве излучающей свет вольфрамовой спирали, тело нагрева испаряет молекулы вольфрама, оседающие на внутренней поверхности колбы. Постепенно нить накаливания ослабевает и перегорает.

Галогенные устройства служат намного дольше, поскольку под воздействием паров буферного газа, частицы вольфрама после испарения, вновь оседают на нити накаливания.

Галогеновые лампы обладают следующими преимуществами:

  1. длительный срок в срок эксплуатации до 6500 тысяч часов беспрерывного использования, что в 1.5 раза дольше обычных ламп накаливания;
  2. стабильная функциональность со стойкостью к перепадам напряжения и эффекта мерцания;
  3. высокопрочная оболочка;
  4. широкий ассортимент стандартных и компактных моделей на рынке;
  5. низкое ультрафиолетовое излучение;
  6. экономность потребления электроэнергии;

Касаемо негативного влияния на зрение, то галогенные лампочки его почти не оказывают. К недостаткам таких ламп стоит отнести сильный нагрев колбы, при котором возможно плавление и возгорание элементов светильника, низкая переносимость перепадов напряжения, влияющая на сокращение эксплуатационных качеств.

Энергосберегающие лампы

Это искусственные осветительные устройства, постепенно вытесняющие с рынка обычные лампочки накаливания. В этих приборах, электрический разряд, воздействуя на пары ртути и газа арагон, дает ультрафиолетовое излучение. Колба лампы покрыта люминофором, веществом, преобразующим ультрафиолетовые волны в свет.

В принципе при правильном использовании, такие лампы безопасны для зрения и здоровья человека. Основную опасность представляют некачественные изделия, например китайского производства. Вредные для организма вещества находятся под герметической колбой. При неправильной сборке ядовитые испарения будут просачиваться сквозь возможные щели, представляя серьезную угрозу для здоровья.

Также пагубное воздействие на организм оказывает ультрафиолетовое излучение. Его длительное воздействие приводит к снижению выработки гормона мелатонина. Это биологически активное вещество является регулятором циркадного ритма в организме. Оно сигнализирует, о смене дня на ночь, определяет время отдыха.

Следовательно, симптомы недостачи мелатонина проявляются бессонницей, вялостью, сонливостью. Повышенное излучение ультрафиолета происходит по причине некачественного лимонофора, покрывающего колпак энергосберегающей лампы. В остальных случаях проблема обусловлена слишком длительным периодом эксплуатации устройства, поскольку со временем на колбе образовываются микро-трещинки.

Еще один фактор, воздействующий на зрение, обусловлен мерцанием энергосберегающего осветительного устройства. Оно происходит в случае, когда из строя выходит конденсатор и слабый электрический разряд дает эффект мерцания. Под влиянием такого освещения, глаза устают и начинают болеть, возникают приступы головной боли, у пациентов с эпилепсией повышается риск возникновения припадка.

Светодиодные лампочки

Светодиодные осветительные устройства визуально напоминают обычные лампочки накаливания. Но внешний вид – это единственное сходство. В остальном эти приборы более высоко технологичные, намного дольше эксплуатируются (средний срок службы 2-4 года) и у них другой принцип работы основанный на светодиодах.

Среди преимуществ таких ламп стоит выделить:

  • длительный срок эксплуатации. Устройство способно работать при беспрерывном освещении в течение 100 часов;
  • Экономность. Светодиодные лампы потребляют в 10 раз меньше электроэнергии, чем лампочки накаливания и в 3 раза люминесцентных устройств освещения;
  • Экологическая безопасность. В этих лампах не содержится ртути и других вредных веществ. Поэтому вышедшие из строя приборы безопасно утилизировать с простым мусором;
  • Высокая ударостойкость. Лампочки этого вида при падении не разбиваются на мелкие осколки.

Светодиодные лампы могут нанести вред зрению человека. Впрочем, нарушение функций зрительного анализатора возможно лишь под регулярным световым воздействием этих устройств. Энергосберегающие и светодиодные лампочки имеют этикетку с указанием цветовой температуры измеряемой в кельвинах. Чем выше величина, тем белее, то есть холоднее свет.

При приобретении светодиодных ламп эксперты рекомендуют внимательно изучать величины цветовой температуры. Показатели на упаковке 4000 К и больше, говорят о недопустимости к использованию таких приборов в квартире. Такие изделия используются для освещения больших помещений и улиц. Для освещения квартир рекомендуется использовать светодиодные лампы Ц. Т. 3000 — 4000 Кельвинов. Такое излучение цвета не теплое, а естественное или холодное белое.

Какие лампы для глаз хуже, и какие лучше

Влияние ламп на глазаОпределить какие лампы насколько безопасны для зрения затруднительно потому что, конкретных исследований не проводилось. Влияние искусственных источников света на зрительный аппарат, зависит от определенных условий. Например, в квартирных помещениях, рекомендуется использовать обычные лампочки средней мощности 100 – 150 ват.

Светодиодные лампы для освещения квартир рекомендуются цветовой температурой от 3000 до 4000 Кельвинов. Такое освещение не теплое, а естественное или холодное белое и менее опасно для глаз.

Оптимальный вариант выбора энергосберегающих устройств для освещения жилого помещения – это экономные лампочки мощностью температурного цвета в 3000 – 4000 К. Для небольших комнат нужно подбирать экономные лампы с Т. С. 2500-3000 К, имитирующие теплое свечение схожее со светом обычных лампочек накаливания.

Галогенные лампы накаливания наиболее безопасны для зрения. Их нейтрально-белое свечение не утомляет глаза, создает ощущение уюта. Хуже всего на зрение влияют светодиодные устройства. Несмотря на экономность и долгую службу, длительное воздействие их светодиодного света, сине-голубого диапазона, сильно вредит сетчатой оболочке глаза.

Какие настольные осветительные приборы лучше для глаз

Многих интересует, как правильно без ущерба для зрения и здоровья в целом выбрать настольную лампу. Также при выборе важно уделять внимание цвету корпуса устройства. Они бывают двух видов блестящие и матовые.

Если корпус блестящий свет от него отражается и сильно отсвечивает в глаза, негативно влияя на сетчатку. Такое систематическое воздействие в течение 3-6 месяцев и нескольких часов в сутки, способно снизить зрение на несколько диоптрий. Следовательно, рекомендуется приобретать настольные лампы с матовой ножкой и основанием. Это исключит воздействие бликов на глаза. 

В качестве источника света для настольных ламп офтальмологи рекомендуют использовать обычные лампы накаливания мощностью 40-60 Вт с мягким желтым цветом.

Поскольку при использовании энергосберегающих устройств их белое свечение, излучает неприметное мерцание, вызывая помимо дискомфорта спазмы глазного нерва.

Видео по теме:

Заметили ошибку? Выделите ее и нажмите Ctrl+Enter, чтобы сообщить нам.

Вред синего света для глаз человека

Синий свет и оптические покрытия, уменьшающие его пропускание

В этой статье мы хотим разобрать все аспекты, что касаются синего света и постараемся ответить на такие вопросы:

Что такое свет?

Для того что бы разобраться, что такое синий свет, давайте для начала разберемся с базовым термином — свет.

Все видели, как луч света пробивается в темную комнату, если для не вооруженного глаза свет и выглядит однородной статичной структурой, то это далеко не так.

луч света

Свет — это электромагнитное излучение, которое имеет волновую природу, проще говоря свет распространяется в виде периодических колебаний или иначе говоря волн, эти волны, как и волны на море имеют амплитуду, то есть частоту с которой они совершают свои колебания.

По своей структуре свет состоит из фотонов. Фотоны — это такие крошечные сгустки энергии, но Фотон — это не простая частица, это маленький отрезок электромагнитной волны.

световая волна

Не пугайтесь, мы не будем здесь углубляется в квантовую физику. Всё что нам нужно знать, это то, что свет распространяется волнами, они отличаются друг от друга энергией и длиной. Чем длиннее волна, тем меньше ее энергия.

Длинна волны света измеряется в нанометрах (нм) – то есть один нанометр равен 10-9 метра, это очень, очень маленькие расстояния, к слову, имеется ввиду самый обычный всем знакомый метр, если хотите портной.

Волны света имеют разную длину и человеческий глаз способен воспринимать только волны определенной длинны, такой диапазон принято называть видимым спектром или видимым излучением. Считается что глаз может воспринять электромагнитное излучение длинной от 380 до 760 нм.

На рисунке ниже схематично представлена световая волна с разделением на видимый и не видимый спектр волны света.

видимый спектр света

Чем длиннее волна света, тем больше в ней инфракрасного излучения, чем короче становится волна тем более усиливается ультрафиолетовое излучение.

Меньшими значениями длины волны называют ультрафиолетовым. Справа от видимого диапазона начинается область инфракрасного излучения. Но если взять весь электромагнитный спектр волн, то есть весь предел в котором могут производить колебания электромагнитные волны, то мы увидим, что видимое их излучение, а именно то, что мы называем светом, это довольно маленький промежуток.

полный спектр света

И как мы видим отклонение в левую сторону даёт нам УФ излучение, рентгеновские лучи, гамма- излучение, что безусловно является очень вредным для наших глаз, но это не значит, что инфракрасное излучение или микроволновое полезно для глаз, оно также вредно и опасно для органов зрения, к примеру, на любых приборах, использующих инфракрасный лазер стоит предупреждение об опасности, вот несколько примеров таких сообщений:

лазерное излучение

Чем опасно ультрафиолетовое излучение?

схема видимого спектра

Итак, мы выяснили, если отталкиваться от таблицы, то красный свет — это правая зона видимого спектра и далее в право, а синий свет — это то что находиться с левой стороны схемы, то есть это самый левый край и далее, всё это относиться к синему свету иначе называемым ультрафиолетовым излучением.

Давайте же разберемся в чём таится опасность синего света, и ультрафиолетового излучения.

В разных стандартах и источниках цифры могут немного варьироваться, к примеру, не безызвестный стандарт ISO по солнечному излучению делит УФ излучение на такие группы:

Наименование

Длина волны

Аббревиатура

Ближний

400—300 нм

NUV

Ультрафиолет А, длинноволновой диапазон

400—315 нм

UVA

Средний

300—200 нм

MUV

Ультрафиолет B, средневолновой

315—280 нм

UVB

Дальний

200—122 нм

FUV

Ультрафиолет С, коротковолновой

280—100 нм

UVC

Экстремальный

121—10 нм

EUV, XUV

Считается что человек в природной среде обычно имеет контакт с УФ излучением в пределах от 200 до 400 нм.

Главное правило ультрафиолета

Чем короче длина волны, тем опаснее ультрафиолетовое излучение.

схема излучение синего света

Поскольку всё что ниже 200 «фильтруется» озоновым слоем планеты и как правило не доходит до её поверхности.

УФ излучение от 200 до 315 нм частично фильтруется озоновым слоем, но всё же небольшая часть его доходит до поверхности планеты, и как раз за счёт этого типа излучения летом мы имеем загар на коже, но этот тип лучей вреден для глаз, поскольку слишком интенсивное воздействие данного вида УФ лучей на глаза вызывает фотокератит, который может привести к временной потере зрения (сильную степень фотокератита часто называют «снежной слепотой»), а также другие осложнения, связанные с нарушением нормального состояния роговицы и века.

синий свет в горах

Риск фотокератита возрастает в высокогорье, а также на снегу, если не защищать глаза от ультрафиолетового излучения. Отметим, что воздействие ультрафиолетового излучения УФ-В диапазона ограничивается поверхностью глаза, внутрь глаза эти ультрафиолетовые лучи практически не проникают.

УФ излучение диапазона от 315 до 390 нм, находиться рядом с видимым спектром, само по себе менее опасно. Однако эти лучи, способны проникать глубоко внутрь глаза и оказывать повреждающее действие на хрусталик и сетчатку.

Воздействие УФ излучения этого диапазона на глаза в течение длительного времени приводит к увеличению риска ряда опасных заболеваний глаз, включая катаракту и дегенерацию макулы, которая считается основной причиной слепоты в старческом возрасте.

В последние годы специалисты большое внимание уделяют синим лучам видимого спектра (около 400 нм), которые непосредственно примыкают к длинноволновой части УФ-диапазона, полагая, что длительное воздействие этих лучей видимого спектра на глаза также небезопасно, поскольку они глубоко проникают внутрь глаза и воздействуют на сетчатку. При кратковременном, сильном воздействии УФ излучения (если смотреть на сварку, бактерицидную лампу, наблюдать солнечное затмение без защитных фильтров или не защищать глаза в высокогорье) возможно поражение глаз называемое фотокератит.

фотокератит

Фотокератит:

Это ожог, в результате которого происходит повреждение роговицы глаза (роговица – это прозрачная и слегка выпуклая передняя часть глаза).

Но не стоит думать, что, если вы избегаете сильных УФ излучений, вы в безопасности, дело в том, что эффект от воздействия ультрафиолета кумулятивен, то есть он накапливается в организме. Ультрафиолетовое излучение – ионизирующее, оно приводит к образованию свободных радикалов, которые повреждают «нормальные» молекулы, в том числе ДНК, РНК и молекулы белков. Повреждения в клетках и тканях накапливаются с возрастом, что приводит к ухудшению зрения, развитию катаракты и повреждений сетчатки.

Важный момент

Пока человек не достигает среднего возраста, синий свет не поглощается такими естественными физиологическими фильтрами, как слезная пленка, роговица, хрусталик и стекловидное тело глаза. Наивысшая проницаемость коротковолнового видимого синего света обнаруживается в молодом возрасте и медленно сдвигается в более длинноволновый видимый диапазон по мере увеличения срока жизни человека. Глаза 10-летнего ребенка способны поглощать в 10 раз больше синего света, чем глаза 95-летнего старика.

Искусственные источники УФ излучения вредны не только для глаз

На протяжении нескольких десятков лет ученые внимательно изучали влияние синего света на организм человека и установили, что его продолжительное воздействие сказывается не только на состоянии здоровья глаз, но и на циркадных ритмах, а также провоцирует целый ряд серьезных заболеваний.

Многие исследования последних лет находили связь между работой в ночную смену при воздействии искусственного света и появлением или обострением у испытуемых сердечно-сосудистых заболеваний, сахарного диабета, ожирения, а также рака предстательной и молочной желез. Ученые связывают их возникновение с подавлением синим светом секреции мелатонина, который влияет на циркадные ритмы человека.

Циркадные ритмы (от лат. circa – около, кругом и лат. dies – день) – это циклические колебания интенсивности различных биологических процессов, связанные со сменой дня и ночи, или так называемые внутренние часы организма.

В течение длительной эволюции человек, как все живое на Земле, приспособился к ежедневной смене темного и светлого времени суток.

эволюция глаз человека

Одним из наиболее эффективных внешних сигналов, поддерживающих 24-часовой цикл жизнедеятельности человека, является свет. Наши зрительные рецепторы посылают сигнал, поступающий в шишковидную железу; он обусловливает синтез и выделение в кровоток нейрогормона мелатонина, вызывающего сон. Когда темнеет, выработка мелатонина увеличивается, и человеку хочется спать. Яркое освещение тормозит синтез мелатонина, желание заснуть исчезает. Сильнее всего выработка мелатонина подавляется излучением с длиной волны 450–480 нм, т. е. синим светом.

С точки зрения эволюции время использования человечеством электрического освещения пренебрежимо мало, и наш организм в сегодняшних условиях реагирует так же, как и у наших далеких предков.

электрический свет в ссср

Это означает, что синий свет нам жизненно необходим для правильного функционирования организма, однако широкое внедрение и продолжительное использование источников искусственного освещения с высоким спектральным содержанием синего света, а также применение разнообразных электронных устройств, не только наносит вред нашим глазам, но и сбивает наши внутренние часы. По данным исследований, достаточно 30-минутного нахождения в помещении, освещаемом люминесцентной лампой с холодным синим светом, чтобы нарушить продуцирование мелатонина у здоровых взрослых людей. В результате у них возрастает настороженность, ослабляется внимание, в то время как воздействие ламп с излучением желтого света оказывает малое влияние на синтез мелатонина.

Какие бывают источники синего света

Все источники ультрафиолета можно разделить на природные и искусственные. К основному источнику УФ излучения в природе относиться солнце, если кратко, то чем более солнечная территория, тем больше УФ излучения получит ваш организм, а также органы зрения. С искусственными источниками УФ, тут ситуация более интересная, поскольку таких источников в повседневной жизни у нас гораздо больше.

Осветительные лампы

УФ излучение производят не все лампы, к примеру обычная осветительная лампа накаливания, которая в простонародье называется лампочка Ильича, которые производит свет за счёт нагревания вольфрамовой нити, относиться к источнику инфракрасного излучения, поскольку в её спектре излучения инфракрасная область занимает почти 75 %.

искусственные источники синего света.jpg

Типы осветительных ламп, которые являются источником УФ излучения:

  • светодиодные лампы;
  • ртутные лампы;
  • люминесцентные;
  • бактерицидные лампы;
  • фотосинтетические.

Надо сказать, что все лампы из этого списка является источниками искусственного УФ излучения, независимо от того в каком типе конструкции выполнена сама лампа, в виде компактной лампочки или большой длинной конструкции, важен сам тип лампы.

Несомненно, что все эти искусственные источники УФ излучения наносят вред органам зрения, поэтому старайтесь избегать их длительного воздействия и старайтесь ограничивать их применение в бытовых условиях.

Источники УФ излучения в бытовых приборах:

  • мониторы;
  • смартфоны;
  • ноутбуки;
  • мобильные игровые приставки;
  • телевизоры;
  • 3Д шлемы и 3Д очки;
  • Цифровые камеры и фотоаппараты.

Важно понимать, что это далеко не полный список, поскольку постоянно выходят новые устройства, которые в своей конструкции используют экраны изображение на которых формируется за счёт подсветки люминесцентными лампами или светодиодами ещё называемой LED подсветкой, все эти устройства являются источником вредного УФ излучения.

Существует ли защита от синего света?

Интересная особенность, практически каждая женщина и девушка знает, что находиться под прямыми солнечными лучами довольно опасно, и как правило на пляже они себе и своему ребенку наносят различные крема и средства, которые предотвращают или сильно ослабляют количество попадаемого на кожу ультрафиолета, поскольку в результате такого интенсивного УФ излучения можно получить довольно серьёзные осложнения вплоть до раковых заболеваний кожи. Но почему-то мало кто задумывается над тем, что не только наша кожа нуждается в защите от УФ, но и такой нежный орган как глаза, они как мы выяснили в этом материале также сильно подвержены негативному влиянию УФ лучей.

защита глаз от синего света

К счастью в настоящее время офтальмология не стоит на месте и совершила большой прорыв в области защиты зрения от ультрафиолета, в наше время разработаны линзы и очки, которые помогут полностью защитить глаза вас и ваших детей от негативного ультрафиолетового излучения как природного, так и искусственного происхождения. На рынке нашей страны уже представлен целый ряд очковых линз с оптическими покрытиями, которые помогают уменьшить влияние синего света на глаза.

очки с фильтром синего света

Если в нашей полосе не так много солнечного света и наши дедушки, и бабушки очень часто сохранили хорошее зрение до глубокой старости, в наше время невозможно быть в стороне от огромного количества гаджетов, которые с каждым годом всё больше окружают нашу жизнь, а это в свою очередь самым негативным образом сказывается на здоровье глаз, поэтому позаботьтесь о здоровье глаз заранее, ведь как известно легче предотвратить болезнь чем её лечить.

Защититься от опасного ультрафиолета можно довольно легко достаточно использовать для этого очки или контактные линзы, но к сожалению далеко не все очки и линзы, смогут защитить ваши глаза от УФ излучения. Гарантированной защитой от УФ обладают только линзы со специальным покрытием.

Компания Crizal, официальным партнером которой является наша клиника проводила многолетние исследования и испытания результатом которых стало изобретение специального покрытия Crizal Prevencia, которое защищает глаза от опасного сине-фиолетового света, вызывающего гибель клеток сетчатки, и в тоже время оно пропускает сине-голубой свет, необходимый для общего хорошего самочувствия человека и регулировки его биологических часов. А так же Crizal Eyezen эти линзы созданы для оптимизации восприятия информации с цифровых экранов гаджетов в них применены 3 революционные технологии:

  • технология распределения оптической силы – увеличение оптической силы в нижней части линзы предназначена для поддержания требующих усилий механизма аккомодации и конвергенции наших глаз.;
  • защита от вредного синего света – Блокирует сине-фиолетовое излучение от экрана цифровых устройств и пропускает полезный сине-голубой свет. ;
  • технология волнового фронта обеспечивает максимально широкие поля зрения в сравнение с обычными однофокальными линзами.

Результат – отличная фокусировка, снижение утомляемости глаз и защита от синего излучения. Очки с этим покрытием представлены в нашем салоне оптики, а также мы можем изготовить линзы с таким покрытием для вашей оправы.

Оптика-радуга

В нашей клинике вы не только сможете пройти комплексное обследование, после которого вы узнаете текущее состояние ваших глаз и получите рекомендации профессионального офтальмолога, но и сможете подобрать линзы или очки, по ваших индивидуальным характеристикам, которые смогут защитить ваше зрение от вредного ультрафиолетового излучения, но и помогут сохранить ваше зрение острым на долгие годы.

Поделитесь с друзьями:

Свет глаз или нанолюминофоры — Свой мирок — LiveJournal

До чего доехал прогресс, помню, в старину тоже такое было, отсвечивали у некоторых глаза в темноте, костёр горит а глаза в кустах светятся. Многие подсознательно боятся таких глаз, пугают их светящиеся глаза ночью, но это всё преданья старины глубокой. Сейчас светящиеся в темноте глаза это побочный эффект процедуры омоложения, дохнут правда от такого омоложения тоже многие, не все процедуры омоложения одинаково полезны.

Естественно журналюги в целях раздувания сенсации многое переврали в этой передаче, но стволовые клетки из убиенных младенцев действительно  применяют в целях омоложения, и глаза у некоторых прошедших такую процедуру действительно светятся.

далее отсюда:http://bg.ru/society/vremeni_bolshe_ne_budet-4456/

«Деятельность частных клиник и лабораторий, ведущих исследования в области стволовых клеток, в США строго регламентирована. В Москве же более 20 клиник и салонов красоты предлагают комплексное омоложение с помощью стволовых клеток. В некоторые из них едут омолаживаться из-за границы.

Дальше начинаются ужасы. Профессор Тепляшин рассказывает, что большинство московских салонов, предлагающих клеточную терапию, используют ткань абортированных зародышей. На Западе действует строжайший запрет на использование абортивного материала в клинических испытаниях. Это называется биоэтика. Правда, откуда тогда там  берутся абортированные зародыши 18—22-недельного срока, в странах где запрещены аборты после 12 недель, не совсем понятно.

Результаты поразительны, вот только ни один иностранный журнал не хочет их опубликовывать — как говорит профессор Сухих. У профессора свои принципы: «Мы никогда не станем использовать выкидыши — это часто дефектный материал. Мы работаем с зародышами, полученными в результате социальных абортов, когда прерывание беременности — добровольное решение матери». В лаборатории профессора курс омоложения фетальными клетками стоит около 8 тысяч долларов.»

Ну а теперь про нанолюминоморфы-светлячки. Омолаживающую жижу втыкают в самые разные места, и вот чтоб проследить её движение от инекции и далее по омолаживаему организму её подсвечивают нанолюминоморфами. Это и даёт эффект светящихся глаз.

про нанолюминоморфы взял здесь: http://cbio.ru/page/47/id/3126/

«Светлячок чуть больше молекулы. Люминофоры – это вещества, обладающие способностью излучать свет определенной длины волны после возбуждения, например, после воздействия ультрафиолетовым светом, электрическим разрядом или электронным пучком. Примеров их использования – масса.

– Что такое нанолюминофоры? – спрашиваю профессора, доктора наук, заведующего отделом нанодисперсных материалов НТК «Институт монокристаллов» Ю.Малюкина.

– Это те же люминофоры, но в виде частичек величиной всего 5 нанометров, то есть миллиардных долей метра («нано» – греческое слово, означающее «карлик»), – объяснил Юрий Викторович. – Для сравнения: размер атомов или простейших молекул составляет около 0,1 нанометра, а биологической клетки – 20 тысяч нанометров.

Из всех известных наноматериалов нанолюминофоры занимают достаточно узкую нишу. Однако способность к люминесценции и взаимодействию с такими биологическими системами, как клетка, ее отдельные структуры, ДНК и РНК, делает их важным инструментом исследования в микробиологии и медицине.

– А не вредны ли нанолюминофоры клетке или живому организму в целом?

– Все метки, которые мы используем в экспериментах с клетками, практически нейтральны для живого организма. К тому же, чтобы окрасить популяцию клеток объемом один кубический сантиметр, нанолюминофоров требуется в десятки тысяч раз меньше. Они не видны невооруженным глазом.

В отличие от нанолюминофоров, благодаря СМИ о стволовых клетках наслышаны многие. В последнее время они стали объектом активных исследований ученых в научных центрах разных стран мира.
Напомню, что стволовые клетки, которые лежат в основе клеточной и тканевой терапии, являются своего рода строительными базовыми единицами организма, способными трансформироваться в разные виды клеток. Они содержатся в тканях и органах любого человека, однако в разных количествах – у молодых их много, а у людей преклонных лет – мало. Ученых привлекает их умение находить в организме очаг болезни и восстанавливать пораженное место.

– Какие новые возможности открывает перед медиками использование нанотехнологий? – с этим вопросом обращаюсь к директору института академику В.Грищенко.

– Светящиеся наночастицы впервые дают возможность получить наглядную картину миграции клеток и их функционирования при введении в живой организм, в том числе организм человека. Так, наша сотрудница Елена Гончарук наносила лабораторным животным на места травм и ожогов особый гель – это были клетки, которые впустили нанолюминофоры внутрь себя и дали возможность прикрепиться к митохондриям. По свечению таких внутренних меток можно было наблюдать поведение клеток непосредственно в процессе их жизнедеятельности, например во время деления. Это очень интересные результаты. Разработана методика преобразования стволовых клеток в кардиомиоциты – для лечения сердца. Хотя, с другой стороны, есть работы с нашим участием, когда больным при инфаркте миокарда вводили просто стволовые клетки и они помогали сердцу выздоравливать.»

Для позитивного финала добавил старенькую но бодрую песню про свет глаз, или что-то вроде того, слов с её дикцией мне всё равно не разобрать но поёт довольно живо.

Так что если увидите у человека светящиеся в темноте глаза не пугайтесь, это всего лишь бедный но омоложенный миллионер бродит в сумраке вокруг вашего дома:)

Posted in Разное

Отправить ответ

avatar
  Подписаться  
Уведомление о